Rapid Development of Adaptable Situation-Aware Service-based Systems

Author(s):  
S.S. Yau ◽  
S. Mukhopadhyay ◽  
H. Davulcu ◽  
D. Huang ◽  
R. Bharadwaj ◽  
...  

Service-based systems have many applications, such as collaborative research and development, e-business, health care, military applications and homeland security. In these systems, it is necessary to provide users the capability of composing appropriate services into workflows offering higher-level functionality based on declaratively specified goals. In a large-scale and dynamic service-oriented computing environment, it is desirable that the service composition is automated and situation-aware so that robust and adaptive workflows can be generated. However, existing languages for web services are not expressive enough to model services with situation awareness (SAW) and side effects. This chapter presents an approach to rapid development of adaptable situation-aware service-based systems. This approach is based on the a-logic and a-calculus, and a declarative model for SAW. This approach consists of four major components: (1) analyzing SAW requirements using our declarative model for SAW, (2) translating the model representation to a-logic specifications and specifying a control flow graph in a-logic as the goal for situation-aware service composition., (3) automated synthesis of a-calculus terms that define situation-aware workflow agents for situation-aware service composition, and (4) compilation of a-calculus terms to executable components on an agent platform. An example of applying our framework in developing a distributed control system for intelligently and reliably managing a power grid is given.

Author(s):  
Surya Nepal ◽  
John Zic

In the Service Oriented Architecture (SOA) model, a service is characterized by its exchange of asynchronous messages, and a service contract is a desirable composition of a variety of messages. Though this model is simple, implementing large-scale, cross-organizational distributed applications may be difficult to achieve in general, as there is no guarantee that service composition will be possible because of incompatibilities of Web service contracts. We categorize compatibility issues in Web service contracts into two broad categories: (a) between contracts of different services (which we define as a composability problem), and (b) a service contract and its implementation (which we define as a conformance problem). This chapter examines and addresses these problems, first by identifying and specifying contract compatibility conditions, and second, through the use of compatibility checking tools that enable application developers to perform checks at design time.


2015 ◽  
Vol 2015 ◽  
pp. 1-20 ◽  
Author(s):  
Xiao Song ◽  
Yulin Wu ◽  
Yaofei Ma ◽  
Yong Cui ◽  
Guanghong Gong

Big data technology has undergone rapid development and attained great success in the business field. Military simulation (MS) is another application domain producing massive datasets created by high-resolution models and large-scale simulations. It is used to study complicated problems such as weapon systems acquisition, combat analysis, and military training. This paper firstly reviewed several large-scale military simulations producing big data (MS big data) for a variety of usages and summarized the main characteristics of result data. Then we looked at the technical details involving the generation, collection, processing, and analysis of MS big data. Two frameworks were also surveyed to trace the development of the underlying software platform. Finally, we identified some key challenges and proposed a framework as a basis for future work. This framework considered both the simulation and big data management at the same time based on layered and service oriented architectures. The objective of this review is to help interested researchers learn the key points of MS big data and provide references for tackling the big data problem and performing further research.


Author(s):  
Eugene Santos Jr. ◽  
Eunice E. Santos ◽  
Hien Nguyen ◽  
Long Pan ◽  
John Korah

With the proliferation of the Internet and rapid development of information and communication infrastructure, E-governance has become a viable option for effective deployment of government services and programs. Areas of E-governance such as Homeland security and disaster relief have to deal with vast amounts of dynamic heterogeneous data. Providing rapid real-time search capabilities for such databases/sources is a challenge. Intelligent Foraging, Gathering, and Matching (I-FGM) is an established framework developed to assist analysts to find information quickly and effectively by incrementally collecting, processing and matching information nuggets. This framework has previously been used to develop a distributed, free text information retrieval application. In this chapter, we provide a comprehensive solution for the E-GOV analyst by extending the I-FGM framework to image collections and creating a “live” version of I-FGM deployable for real-world use. We present a Content Based Image Retrieval (CBIR) technique that incrementally processes the images, extracts low-level features and map them to higher level concepts. Our empirical evaluation of the algorithm shows that our approach performs competitively compared to some existing approaches in terms of retrieving relevant images while offering the speed advantages of a distributed and incremental process, and unified framework for both text and images. We describe our production level prototype that has a sophisticated user interface which can also deal with multiple queries from multiple users. The interface provides real-time updating of the search results and provides “under the hood” details of I-FGM processes as the queries are being processed.


2014 ◽  
Vol 981 ◽  
pp. 183-186
Author(s):  
Guang Yi Tang ◽  
Deng Ju Yao ◽  
Li Jie Cui

Model-driven architecture and service-oriented architecture are popular software development methods at the present, these two methods have their own advantages and disadvantages, the proposed SOA-based Model-driven Rapid Development Architecture by combining these two methods, Using colored Petri nets’ tools to study service composition methods specifically, and described five basic logical structure of service composition through formal methods, then gave out the construction method of composite services, finally, verified the effectiveness and safety of the service composition method through the modeling.


2021 ◽  
Vol 7 ◽  
pp. e743
Author(s):  
Seyyed-Alireza Radmanesh ◽  
Alireza Haji ◽  
Omid Fatahi Valilai

Cloud manufacturing is a new globalized manufacturing framework which has improved the performance of manufacturing systems. The service-oriented architecture as the main idea behind this framework means that all resources and capabilities are considered as services. The agents interact by way of service exchanging, which has been a part of service composition research topics. Service allocations to demanders in a cloud manufacturing system have a dynamic behavior. However, the current research studies on cloud-based service composition are mainly based on centralized global optimization models. Therefore, a distributed deployment and real-time synchronization platform, which enables the globalized collaboration in service composition, is required. This paper proposes a method of using blockchain to solve these issues. Each service composition is considered as a transaction in the blockchain concept. A block includes a set of service compositions and its validity is confirmed by a predefined consensus mechanism. In the suggested platform, the mining role in blockchain is interpreted as an endeavor for proposing the proper service composition in the manufacturing paradigm. The proposed platform has interesting capabilities as it can increase the response time using the blockchain technology and improve the overall optimality of supply-demand matching in cloud manufacturing. The efficiency of the proposed model was evaluated by investigating a service allocation problem in a cloud manufacturing system in four large scale problems. Each problem is examined in four centralized modes, two, three and four solvers in blockchain-based model. The simulation results indicate the high quality of the proposed solution. The proposed solution will lead to at least 15.14% and a maximum of 34.8 percent reduction in costs and 20 to 68.4 percent at the solving time of the problem. It is also observed that with increasing the number of solvers (especially in problems with larger dimensions) the solution speed increases sharply (more than 68% improvement in some problems), which indicates the positive effect of distribution on reducing the problem-solving time.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xiao-ling Tao ◽  
Zi-yi Liu ◽  
Chang-song Yang

Network security situation assessment (NSSA) is an important and effective active defense technology in the field of network security situation awareness. By analyzing the historical network security situation awareness data, NSSA can evaluate the network security threat and analyze the network attack stage, thus fully grasping the overall network security situation. With the rapid development of 5G, cloud computing, and Internet of things, the network environment is increasingly complex, resulting in diversity and randomness of network threats, which directly determine the accuracy and the universality of NSSA methods. Meanwhile, the indicator data is characterized by large scale and heterogeneity, which seriously affect the efficiency of the NSSA methods. In this paper, we design a new NSSA method based on the autoencoder (AE) and parsimonious memory unit (PMU). In our novel method, we first utilize an AE-based data dimensionality reduction method to process the original indicator data, thus effectively removing the redundant part of the indicator data. Subsequently, we adopt a PMU deep neural network to achieve accurate and efficient NSSA. The experimental results demonstrate that the accuracy and efficiency of our novel method are both greatly improved.


ROBOT ◽  
2011 ◽  
Vol 33 (4) ◽  
pp. 434-439 ◽  
Author(s):  
Dangyang JIE ◽  
Fenglei NI ◽  
Yisong TAN ◽  
Hong LIU ◽  
Hegao CAI

2021 ◽  
Author(s):  
Cong Wang ◽  
Zehao Song ◽  
Pei Shi ◽  
Lin Lv ◽  
Houzhao Wan ◽  
...  

With the rapid development of portable electronic devices, electric vehicles and large-scale grid energy storage devices, it needs to reinforce specific energy and specific power of related electrochemical devices meeting...


2021 ◽  
Vol 22 (15) ◽  
pp. 8266
Author(s):  
Minsu Kim ◽  
Chaewon Lee ◽  
Subin Hong ◽  
Song Lim Kim ◽  
Jeong-Ho Baek ◽  
...  

Drought is a main factor limiting crop yields. Modern agricultural technologies such as irrigation systems, ground mulching, and rainwater storage can prevent drought, but these are only temporary solutions. Understanding the physiological, biochemical, and molecular reactions of plants to drought stress is therefore urgent. The recent rapid development of genomics tools has led to an increasing interest in phenomics, i.e., the study of phenotypic plant traits. Among phenomic strategies, high-throughput phenotyping (HTP) is attracting increasing attention as a way to address the bottlenecks of genomic and phenomic studies. HTP provides researchers a non-destructive and non-invasive method yet accurate in analyzing large-scale phenotypic data. This review describes plant responses to drought stress and introduces HTP methods that can detect changes in plant phenotypes in response to drought.


Sign in / Sign up

Export Citation Format

Share Document