A Survey on Supervised Convolutional Neural Network and Its Major Applications

2020 ◽  
pp. 1058-1071
Author(s):  
D. T. Mane ◽  
U. V. Kulkarni

With the advances in the computer science field, various new data science techniques have been emerged. Convolutional Neural Network (CNN) is one of the Deep Learning techniques which have captured lots of attention as far as real world applications are considered. It is nothing but the multilayer architecture with hidden computational power which detects features itself. It doesn't require any handcrafted features. The remarkable increase in the computational power of Convolutional Neural Network is due to the use of Graphics processor units, parallel computing, also the availability of large amount of data in various variety forms. This paper gives the broad view of various supervised Convolutional Neural Network applications with its salient features in the fields, mainly Computer vision for Pattern and Object Detection, Natural Language Processing, Speech Recognition, Medical image analysis.

2020 ◽  
pp. 1149-1161
Author(s):  
D. T. Mane ◽  
U. V. Kulkarni

With the advances in the computer science field, various new data science techniques have been emerged. Convolutional Neural Network (CNN) is one of the Deep Learning techniques which have captured lots of attention as far as real world applications are considered. It is nothing but the multilayer architecture with hidden computational power which detects features itself. It doesn't require any handcrafted features. The remarkable increase in the computational power of Convolutional Neural Network is due to the use of Graphics processor units, parallel computing, also the availability of large amount of data in various variety forms. This paper gives the broad view of various supervised Convolutional Neural Network applications with its salient features in the fields, mainly Computer vision for Pattern and Object Detection, Natural Language Processing, Speech Recognition, Medical image analysis.


2017 ◽  
Vol 4 (3) ◽  
pp. 71-82 ◽  
Author(s):  
D. T. Mane ◽  
U. V. Kulkarni

With the advances in the computer science field, various new data science techniques have been emerged. Convolutional Neural Network (CNN) is one of the Deep Learning techniques which have captured lots of attention as far as real world applications are considered. It is nothing but the multilayer architecture with hidden computational power which detects features itself. It doesn't require any handcrafted features. The remarkable increase in the computational power of Convolutional Neural Network is due to the use of Graphics processor units, parallel computing, also the availability of large amount of data in various variety forms. This paper gives the broad view of various supervised Convolutional Neural Network applications with its salient features in the fields, mainly Computer vision for Pattern and Object Detection, Natural Language Processing, Speech Recognition, Medical image analysis.


Author(s):  
Dr. K. Naveen Kumar

Abstract: Recently, a machine learning (ML) area called deep learning emerged in the computer-vision field and became very popular in many fields. It started from an event in late 2012, when a deep-learning approach based on a convolutional neural network (CNN) won an overwhelming victory in the best-known worldwide computer vision competition, ImageNet Classification. Since then, researchers in many fields, including medical image analysis, have started actively participating in the explosively growing field of deep learning. In this paper, deep learning techniques and their applications to medical image analysis are surveyed. This survey overviewed 1) standard ML techniques in the computer-vision field, 2) what has changed in ML before and after the introduction of deep learning, 3) ML models in deep learning, and 4) applications of deep learning to medical image analysis. The comparisons between MLs before and after deep learning revealed that ML with feature input (or feature-based ML) was dominant before the introduction of deep learning, and that the major and essential difference between ML before and after deep learning is learning image data directly without object segmentation or feature extraction; thus, it is the source of the power of deep learning, although the depth of the model is an important attribute. The survey of deep learningalso revealed that there is a long history of deep-learning techniques in the class of ML with image input, except a new term, “deep learning”. “Deep learning” even before the term existed, namely, the class of ML with image input was applied to various problems in medical image analysis including classification between lesions and nonlesions, classification between lesion types, segmentation of lesions or organs, and detection of lesions. ML with image input including deep learning is a verypowerful, versatile technology with higher performance, which can bring the current state-ofthe-art performance level of medical image analysis to the next level, and it is expected that deep learning will be the mainstream technology in medical image analysis in the next few decades. “Deep learning”, or ML with image input, in medical image analysis is an explosively growing, promising field. It is expected that ML with image input will be the mainstream area in the field of medical image analysis in the next few decades. Keywords: Deep learning, Convolutional neural network, Massive-training artificial neural network, Computer-aided diagnosis, Medical image analysis, Classification (key words)


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 171084-171094
Author(s):  
Sheng Bi ◽  
Yingjie Zhang ◽  
Min Dong ◽  
Huaqing Min

2018 ◽  
Vol 27 (06) ◽  
pp. 1850026
Author(s):  
Kyoungman Bae ◽  
Youngjoong Ko

The application of deep learning techniques in natural language processing tasks has been increased in recent years. Many studies have used the deep learning techniques to obtain a distributed representation of features. In particular, the convolutional neural network (CNN) with the distributed representation have subsequently been shown to be effective for the natural language processing tasks. This paper presents how to apply the CNN to speech-act classification. Then we analyze the experimental results on two issues, how to solve two problems about sparse speech-acts in train data and out of vocabulary, and how to utilize the advantages of CNN in the speech-act classification. As a result, we obtain the significant improved performances when CNN is applied to the speech-act classification.


1992 ◽  
Author(s):  
Vince L. Wiggins ◽  
Sheree K. Engquist ◽  
Larry T. Looper

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2648
Author(s):  
Muhammad Aamir ◽  
Tariq Ali ◽  
Muhammad Irfan ◽  
Ahmad Shaf ◽  
Muhammad Zeeshan Azam ◽  
...  

Natural disasters not only disturb the human ecological system but also destroy the properties and critical infrastructures of human societies and even lead to permanent change in the ecosystem. Disaster can be caused by naturally occurring events such as earthquakes, cyclones, floods, and wildfires. Many deep learning techniques have been applied by various researchers to detect and classify natural disasters to overcome losses in ecosystems, but detection of natural disasters still faces issues due to the complex and imbalanced structures of images. To tackle this problem, we propose a multilayered deep convolutional neural network. The proposed model works in two blocks: Block-I convolutional neural network (B-I CNN), for detection and occurrence of disasters, and Block-II convolutional neural network (B-II CNN), for classification of natural disaster intensity types with different filters and parameters. The model is tested on 4428 natural images and performance is calculated and expressed as different statistical values: sensitivity (SE), 97.54%; specificity (SP), 98.22%; accuracy rate (AR), 99.92%; precision (PRE), 97.79%; and F1-score (F1), 97.97%. The overall accuracy for the whole model is 99.92%, which is competitive and comparable with state-of-the-art algorithms.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 664
Author(s):  
Yun Xue ◽  
Lei Zhu ◽  
Bin Zou ◽  
Yi-min Wen ◽  
Yue-hong Long ◽  
...  

For Case-II water bodies with relatively complex water qualities, it is challenging to establish a chlorophyll-a concentration (Chl-a concentration) inversion model with strong applicability and high accuracy. Convolutional Neural Network (CNN) shows excellent performance in image target recognition and natural language processing. However, there little research exists on the inversion of Chl-a concentration in water using convolutional neural networks. Taking China’s Dongting Lake as an example, 90 water samples and their spectra were collected in this study. Using eight combinations as independent variables and Chl-a concentration as the dependent variable, a CNN model was constructed to invert Chl-a concentration. The results showed that: (1) The CNN model of the original spectrum has a worse inversion effect than the CNN model of the preprocessed spectrum. The determination coefficient (RP2) of the predicted sample is increased from 0.79 to 0.88, and the root mean square error (RMSEP) of the predicted sample is reduced from 0.61 to 0.49, indicating that preprocessing can significantly improve the inversion effect of the model.; (2) among the combined models, the CNN model with Baseline1_SC (strong correlation factor of 500–750 nm baseline) has the best effect, with RP2 reaching 0.90 and RMSEP only 0.45. The average inversion effect of the eight CNN models is better. The average RP2 reaches 0.86 and the RMSEP is only 0.52, indicating the feasibility of applying CNN to Chl-a concentration inversion modeling; (3) the performance of the CNN model (Baseline1_SC (RP2 = 0.90, RMSEP = 0.45)) was far better than the traditional model of the same combination, i.e., the linear regression model (RP2 = 0.61, RMSEP = 0.72) and partial least squares regression model (Baseline1_SC (RP2 = 0.58. RMSEP = 0.95)), indicating the superiority of the convolutional neural network inversion modeling of water body Chl-a concentration.


Sign in / Sign up

Export Citation Format

Share Document