Collaborative 3D Modeling

2016 ◽  
Vol 5 (3) ◽  
pp. 47-67 ◽  
Author(s):  
Rafika Hajji ◽  
Roland Billen

The need of 3D city models increases day by day. However, 3D modeling still faces some impediments to be generalized. Therefore, new solutions such as collaboration should be investigated. The paper presents a new vision of collaboration applied on 3D modeling through the definition of the concept of a 3D collaborative model. The paper highlights basic questions to be considered for the definition and the development of that model then argues the importance of reuse of 2D data as a promising solution to reconstruct 3D data and to upgrade to integrated 3D solutions in the future. This idea is supported by a case study, to demonstrate how 2D/2.5D data collected from different providers in Walloon region in Belgium can be integrated and reengineered to match the specifications of a 3D building model compatible with the CityGML standard.

2020 ◽  
Vol 60 (1) ◽  
pp. 326
Author(s):  
Subodh Notiyal ◽  
Victoria Seesaha

2D seismic data still provides key information for companies evaluating new permits on offer or entering new basins. However, working on multi-vintage 2D data can be time-consuming for several reasons, including getting correct navigation, variability of physical parameters like amplitude, time and phase between different vintages, and then interpreting the 2D data itself, which often results in gridding artefacts. In a step change to the use of traditional 2D data, TGS has developed a methodology called ‘structurally conformable interpolation’ – also known as 2Dcubed. It is created using input data from available 2D migrated stacks and velocities from available vintages. The workflow includes survey matching of different vintages, data-driven geological model building to interpolate large distances between existing data, and a 3D post-stack migration to minimise the 2D migration artefacts. The merging of these datasets successfully creates a 3D migrated image from legacy 2D data, offering better structure and continuity while increasing confidence in its interpretation. Interpretation of a 3D volume is much more efficient than when using 2D data and is free from 2D artefacts. With this methodology TGS has completed a project covering a 40000km2 area in the Beagle Sub-basin, north-west Western Australia, using existing 2D data from over 42 different vintages. The resulting output ‘Beagle Cube’ interpolated 3D volume has been interpreted for major regional trends and structures. The results are very consistent with the original 2D data, but with better definition of major structures. Another study comparing the interpretation between the interpolated 3D volume and the real open-file 3D shows excellent preservation of the structural picture within the interpolated 3D volume, not at the same level as real 3D, but it gives greater confidence in the regional interpretation conducted within areas that do not have 3D coverage. This paper will address how the interpolation methodology works stage by stage, the results of the final product and how it assists in performing regional interpretation in a quick timeframe.


Author(s):  
D. Visintini ◽  
E. Marcon ◽  
G. Pantò ◽  
E. P. Canevese ◽  
T. De Gottardo ◽  
...  

<p><strong>Abstract.</strong> This paper presents an experience of 3D modeling starting from laser scanning data and following two alternative approaches: the first one, called “Advanced 3D modeling”, based on an original meshing algorithm, while the second make use of Revit BIM software.</p><p>The case study in Palace Ettoreo in Sacile (Pordenone, Italy), constructed in Renaissance Venetian style in the 16th century: it has a trapezoid plan and is developed on three floors, with the ground one endowing a portico on two façades.</p><p>The palace has been surveyed by two terrestrial laser scanners: a Riegl Z420i for 5 external scans and a FARO Photon 120 for 53 internal scans; also a topographic surveying of 270 targets have been carried out. The final TLS cloud has 1,4 billions of points.</p><p>The Advanced 3D modeling has produced a “smart” mesh, allowing also to model the elements with deformations (out of plumb, bulges and troughs). Moreover, this model drastically reduce the stored data: the whole palace is modeled by 111.496 polygons only.</p><p>The modeling with Revit follows the classical flowchart where the principal architectonical elements are gradually composed: this HBIM process has required a strong manual work in exploiting the available parametric objects and/or in the definition of new objects.</p><p>Comparing the two models with respect the points cloud, both have evidenced advantages and limitations: therefore, the best solution is a process involving their combination. At the beginning, the Advanced 3D modeling is performed onto the points cloud, so well exploiting the segmentation tools and the smart meshing of the surfaces preserving any geometrical irregularity. Such obtained model allows metrical and morphological evaluation on the various structural and architectonical elements. Afterwards, this very light model becomes the entry data for the modeling in BIM environment, where also the shape of irregular elements are so imported.</p>


Author(s):  
R. G. Kippers ◽  
M. Koeva ◽  
M. van Keulen ◽  
S. J. Oude Elberink

Abstract. In the past decade, a lot of effort is put into applying digital innovations to building life cycles. 3D Models have been proven to be efficient for decision making, scenario simulation and 3D data analysis during this life cycle. Creating such digital representation of a building can be a labour-intensive task, depending on the desired scale and level of detail (LOD). This research aims at creating a new automatic deep learning based method for building model reconstruction. It combines exterior and interior data sources: 1) 3D BAG, 2) archived floor plan images. To reconstruct 3D building models from the two data sources, an innovative combination of methods is proposed. In order to obtain the information needed from the floor plan images (walls, openings and labels), deep learning techniques have been used. In addition, post-processing techniques are introduced to transform the data in the required format. In order to fuse the extracted 2D data and the 3D exterior, a data fusion process is introduced. From the literature review, no prior research on automatic integration of CityGML/JSON and floor plan images has been found. Therefore, this method is a first approach to this data integration.


Author(s):  
B. Carrión-Ruiz ◽  
S. Blanco-Pons ◽  
A. Weigert ◽  
S. Fai ◽  
J. L. Lerma

<p><strong>Abstract.</strong> In recent years, Augmented Reality (AR) technology has experienced considerable progress and the combination of AR and 3D modeling opens up new opportunities regarding 3D data visualization and interaction. Consequently, the dissemination of cultural heritage can benefit from these technologies in order to display the cultural assets as realistically and interactively as possible. In this way, high-accuracy 3D models are integrated in the real world.</p><p>Nevertheless, progress has also still been limited due to several factors. The paper presents a case study based on the recreation of the Queen Victoria sculpture in an AR application. Furthermore, the environment of the sculpture is simulated by panoramic images, inside the Library of Parliament in Ottawa, Canada. The main problems for the development of an AR smartphone application from panoramic images and photogrammetric 3D data are described in this paper. The characteristics of AR systems are explained in detail, analyzing all the steps involved and the available solutions considered.</p>


Author(s):  
M. Bouziani ◽  
H. Chaaba ◽  
M. Ettarid

Abstract. The objective of our study is the evaluation of the 3D modeling of buildings and the extraction of structural elements from point clouds obtained using two acquisition techniques (drone and terrestrial laser scanner), as well as the evaluation of the usefulness of their integration. The drone shooting mission was carried using the DJI Phantom 3 Professional and the Sony EXMOR 1/2.3" CMOS RGB camera. For the TLS scanning mission, 9 scanning stations were performed using the FARO Focus S350 laser scanner.To allow the fusion of the two point clouds obtained from drone imagery and TLS, an alignment step is applied. This step was performed using the Iterative Closest Point algorithm. Segmentation was performed using the adapted RANSAC algorithm on point clouds obtained from the drone mission and the TLS mission as well as on the merged point cloud in order to extract structural elements of the building such as windows, doors and stairs. Analysis of the results emphasizes the importance of TLS and drone in 3D modeling. TLS gave better results than the drone in extracting structural elements. This work confirms the importance of complementarity between these two technologies to produce detailed, complete and precise 3D models.


Author(s):  
W. Huang ◽  
P.-O. Olsson ◽  
J. Kanters ◽  
L. Harrie

Abstract. Solar energy simulations are used to quantify the potential of the passive use (daylight, solar gains) and the active use (photovoltaics and solar thermal) of solar energy. The simulations can be performed at different scales e.g. buildings, neighbourhoods and cities, with different requirements on the data. For example, for the neighbourhood simulations we need simplified building geometries that can be retrieved from city models, and window information that can be extracted from BIM models (as in many cases window information is missing in city models). In this context, city models and BIM need to be integrated and reconciled. In this paper, we investigate two approaches to integrate and retrieve such information in a case study, where the BIM data is stored in IFC and the city model in CityGML (LOD2). The first approach is to perform a schema matching in an ETL tool, so as to convert and import window information from the IFC file into the CityGML model to create a LOD2-3 building model. We also investigate an alternative avenue, namely a semantic web approach, in which both the BIM and city models are transformed into knowledge graphs (linked data). City models and BIM utilize their respective but interlinked domain ontologies. Particularly, two ontologies are investigated for BIM data, i.e., the ifcOWL ontology and the building topology ontology (BOT). This paper compares different paths of such integrative data retrieval, as well as discloses the gaps mainly with the semantic web approach to further unlock its potential.


Author(s):  
H. Rashidan ◽  
A. Abdul Rahman ◽  
I. A. Musliman ◽  
G. Buyuksalih

Abstract. 3D city models are increasingly being used to represent the complexity of today’s urban areas, as they aid in understanding how different aspects of a city can function. For instance, several municipalities and governmental organisations have constructed their 3D city models for various purposes. These 3D models, which are normally complex and contain semantics information, have typically been used for visualisation and visual analysis purposes. However, most of the available 3D models open datasets contain many geometric and topological errors, e.g., missing surfaces (holes), self-intersecting surfaces, duplicate vertices, etc. These errors prevent the datasets from being used for advanced applications such as 3D spatial analysis which requires valid datasets and topology to calculate its volume, detect surface orientation, area calculation, etc. Therefore, certain repairs must be done before taking these models into actual applications, and hole-filling (of missing surfaces) is an important one among them. Several studies on the topic of automatic repair of the 3D model have been conducted by various researchers, with different approaches have been developed. Thus, this paper describes a triangular mesh approach for automatically repair invalid (missing surfaces) 3D building model (LOD2). The developed approach demonstrates an ability to repair missing surfaces (with holes) in a 3D building model by reconstructing geometries of the holes of the affected model. The repaired model is validated and produced a closed-two manifold model.


2003 ◽  
Vol 42 (05) ◽  
pp. 215-219
Author(s):  
G. Platsch ◽  
A. Schwarz ◽  
K. Schmiedehausen ◽  
B. Tomandl ◽  
W. Huk ◽  
...  

Summary: Aim: Although the fusion of images from different modalities may improve diagnostic accuracy, it is rarely used in clinical routine work due to logistic problems. Therefore we evaluated performance and time needed for fusing MRI and SPECT images using a semiautomated dedicated software. Patients, material and Method: In 32 patients regional cerebral blood flow was measured using 99mTc ethylcystein dimer (ECD) and the three-headed SPECT camera MultiSPECT 3. MRI scans of the brain were performed using either a 0,2 T Open or a 1,5 T Sonata. Twelve of the MRI data sets were acquired using a 3D-T1w MPRAGE sequence, 20 with a 2D acquisition technique and different echo sequences. Image fusion was performed on a Syngo workstation using an entropy minimizing algorithm by an experienced user of the software. The fusion results were classified. We measured the time needed for the automated fusion procedure and in case of need that for manual realignment after automated, but insufficient fusion. Results: The mean time of the automated fusion procedure was 123 s. It was for the 2D significantly shorter than for the 3D MRI datasets. For four of the 2D data sets and two of the 3D data sets an optimal fit was reached using the automated approach. The remaining 26 data sets required manual correction. The sum of the time required for automated fusion and that needed for manual correction averaged 320 s (50-886 s). Conclusion: The fusion of 3D MRI data sets lasted significantly longer than that of the 2D MRI data. The automated fusion tool delivered in 20% an optimal fit, in 80% manual correction was necessary. Nevertheless, each of the 32 SPECT data sets could be merged in less than 15 min with the corresponding MRI data, which seems acceptable for clinical routine use.


Author(s):  
Susan EVANS

This case study explores the strategic business opportunities, for Lane Crawford, an iconic luxury department store, to transition in a circular economy towards sustainability. A new experimentation framework was developed and conducted among cross departmental employees, during a Design Lab, with intention to co-create novel Circular Economy business concepts towards a new vision: the later was a reframe of the old system based on the principles of sustainability; to move beyond a linear operational model towards a circular economy that can contribute to a regenerative society. This work draws on both academic and professional experience and was conducted through professional practice. It was found that innovative co-created concepts, output from the Design Lab, can create radical change in a circular economy that is holistically beneficial and financially viable; looking forward to extract greater value a)Internal organization requires remodeling to transform towards a circular economy; b)Requirement for more horizonal teams across departments vs solely vertical; c)New language and relationships are required to be able to transition towards a circular economy; d)Some form of physical and virtual space requirements, for cross-disciplinary teams to come together to co-create; e)Ability to iterate, learn and evolve requires agency across the business


2017 ◽  
Vol 3 (2) ◽  
pp. 7
Author(s):  
Saida Parvin

Women’s empowerment has been at the centre of research focus for many decades. Extant literature examined the process, outcome and various challenges. Some claimed substantial success, while others contradicted with evidence of failure. But the success remains a matter of debate due to lack of empirical evidence of actual empowerment of women around the world. The current study aimed to address this gap by taking a case study method. The study critically evaluates 20 cases carefully sampled to include representatives from the entire country of Bangladesh. The study demonstrates popular beliefs about microfinance often misguide even the borrowers and they start living in a fabricated feeling of empowerment, facing real challenges to achieve true empowerment in their lives. The impact of this finding is twofold; firstly there is a theoretical contribution, where the definition of women’s empowerment is proposed to be revisited considering findings from these cases. And lastly, the policy makers at governmental and non-governmental organisations, and multinational donor agencies need to revise their assessment tools for funding.


Sign in / Sign up

Export Citation Format

Share Document