Performance Evaluation of VM Placement Using Classical Bin Packing and Genetic Algorithm for Cloud Environment

Author(s):  
Oshin Sharma ◽  
Hemraj Saini

In current era, the trend of cloud computing is increasing with every passing day due to one of its dominant service i.e. Infrastructure as a service (IAAS), which virtualizes the hardware by creating multiple instances of VMs on single physical machine. Virtualizing the hardware leads to the improvement of resource utilization but it also makes the system over utilized with inefficient performance. Therefore, these VMs need to be migrated to another physical machine using VM consolidation process in order to reduce the amount of host machines and to improve the performance of system. Thus, the idea of placing the virtual machines on some other hosts leads to the proposal of many new algorithms of VM placement. However, the reduced set of physical machines needs the lesser amount of power consumption therefore; in current work the authors have presented a decision making VM placement system based on genetic algorithm and compared it with three predefined VM placement techniques based on classical bin packing. This analysis contributes to better understand the effects of the placement strategies over the overall performance of cloud environment and how the use of genetic algorithm delivers the better results for VM placement than classical bin packing algorithms.

Author(s):  
Oshin Sharma ◽  
Hemraj Saini

In current era, the trend of cloud computing is increasing with every passing day due to one of its dominant service i.e. Infrastructure as a service (IAAS), which virtualizes the hardware by creating multiple instances of VMs on single physical machine. Virtualizing the hardware leads to the improvement of resource utilization but it also makes the system over utilized with inefficient performance. Therefore, these VMs need to be migrated to another physical machine using VM consolidation process in order to reduce the amount of host machines and to improve the performance of system. Thus, the idea of placing the virtual machines on some other hosts leads to the proposal of many new algorithms of VM placement. However, the reduced set of physical machines needs the lesser amount of power consumption therefore; in current work the authors have presented a decision making VM placement system based on genetic algorithm and compared it with three predefined VM placement techniques based on classical bin packing. This analysis contributes to better understand the effects of the placement strategies over the overall performance of cloud environment and how the use of genetic algorithm delivers the better results for VM placement than classical bin packing algorithms.


Author(s):  
Oshin Sharma ◽  
Hemraj Saini

The most dominant service of cloud computing is infrastructure as a service (IaaS). Virtualization is the most important feature of IaaS and it is very important for the improvement of resource utilization; but along with this, it also degrades the system's performance and makes them overutilized. Therefore, to solve the problem of overutilization or underutilization of machines and performance improvement of machine, the VMs present inside the physical machine needs to be migrated to another physical machine using the process of VM consolidation, and the reduced set of physical machines after placement needs a lesser amount of power or energy consumption, which is the main aim of energy-aware VM placement. This chapter presents a decision-making VM placement system and compares it with other predefined VM placement techniques. This analysis contributes to a better understanding of the effects of the placement strategies over the overall performance of cloud environment and also shows how the one algorithm delivers better results for VM placement than another.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 389 ◽  
Author(s):  
Aisha Fatima ◽  
Nadeem Javaid ◽  
Tanzeela Sultana ◽  
Waqar Hussain ◽  
Muhammad Bilal ◽  
...  

With the increasing size of cloud data centers, the number of users and virtual machines (VMs) increases rapidly. The requests of users are entertained by VMs residing on physical servers. The dramatic growth of internet services results in unbalanced network resources. Resource management is an important factor for the performance of a cloud. Various techniques are used to manage the resources of a cloud efficiently. VM-consolidation is an intelligent and efficient strategy to balance the load of cloud data centers. VM-placement is an important subproblem of the VM-consolidation problem that needs to be resolved. The basic objective of VM-placement is to minimize the utilization rate of physical machines (PMs). VM-placement is used to save energy and cost. An enhanced levy-based particle swarm optimization algorithm with variable sized bin packing (PSOLBP) is proposed for solving the VM-placement problem. Moreover, the best-fit strategy is also used with the variable sized bin packing problem (VSBPP). Simulations are done to authenticate the adaptivity of the proposed algorithm. Three algorithms are implemented in Matlab. The given algorithm is compared with simple particle swarm optimization (PSO) and a hybrid of levy flight and particle swarm optimization (LFPSO). The proposed algorithm efficiently minimized the number of running PMs. VM-consolidation is an NP-hard problem, however, the proposed algorithm outperformed the other two algorithms.


Author(s):  
Oshin Sharma ◽  
Hemraj Saini

To increase the availability of the resources and simultaneously to reduce the energy consumption of data centers by providing a good level of the service are one of the major challenges in the cloud environment. With the increasing data centers and their size around the world, the focus of the current research is to save the consumption of energy inside data centers. Thus, this article presents an energy-efficient VM placement algorithm for the mapping of virtual machines over physical machines. The idea of the mapping of virtual machines over physical machines is to lessen the count of physical machines used inside the data center. In the proposed algorithm, the problem of VM placement is formulated using a non-dominated sorting genetic algorithm based multi-objective optimization. The objectives are: optimization of the energy consumption, reduction of the level of SLA violation and the minimization of the migration count.


2019 ◽  
Vol 13 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Oshin Sharma ◽  
Hemraj Saini

To increase the availability of the resources and simultaneously to reduce the energy consumption of data centers by providing a good level of the service are one of the major challenges in the cloud environment. With the increasing data centers and their size around the world, the focus of the current research is to save the consumption of energy inside data centers. Thus, this article presents an energy-efficient VM placement algorithm for the mapping of virtual machines over physical machines. The idea of the mapping of virtual machines over physical machines is to lessen the count of physical machines used inside the data center. In the proposed algorithm, the problem of VM placement is formulated using a non-dominated sorting genetic algorithm based multi-objective optimization. The objectives are: optimization of the energy consumption, reduction of the level of SLA violation and the minimization of the migration count.


2019 ◽  
Vol 23 (2) ◽  
pp. 797-836 ◽  
Author(s):  
Seyedeh Yasaman Rashida ◽  
Masoud Sabaei ◽  
Mohammad Mehdi Ebadzadeh ◽  
Amir Masoud Rahmani

Economic Denial of Sustainability (EDoS) is a latest threat in the cloud environment in which EDoS attackers continually request huge number of resources that includes virtual machines, virtual security devices, virtual networking devices, databases and so on to slowly exploit illegal traffic to trigger cloud-based scaling capabilities. As a result, the targeted cloud ends with a consumer bill that could lead to bankruptcy. This paper proposes an intelligent reactive approach that utilizes Genetic Algorithm and Artificial Neural Network (GANN) for classification of cloud server consumer to minimize the effect of EDoS attacks and will be beneficial to small and medium size organizations. EDoS attack encounters the illegal traffic so the work is progressed into two phases: Artificial Neural Network (ANN) is used to determine affected path and to detect suspected service provider out of the detected affected route which further consist of training and testing phase. The properties of every server are optimized by using an appropriate fitness function of Genetic Algorithm (GA) based on energy consumption of server. ANN considered these properties to train the system to distinguish between the genuine overwhelmed server and EDoS attack affected server. The experimental results show that the proposed Genetic and Artificial Neural Network (GANN) algorithm performs better compared to existing Fuzzy Entropy and Lion Neural Learner (FLNL) technique with values of precision, recall and f-measure are increased by 3.37%, 10.26% and 6.93% respectively.


2021 ◽  
pp. 1-24
Author(s):  
Ali Bakhthemmat ◽  
Mohammad Izadi

Many scientists apply fully dynamic bin packing problem solving for resource allocation of virtual machines in cloud environments. The goal of problem-solving is to reduce the number of allocated hosts (bins) and virtual machines (items) migration rates for reducing energy consumption. This study demonstrates a greedy futuristic algorithm (proposed algorithm) for fully dynamic bin packaging with an average asymptotic approximation ratio of 1.231, better than other existing algorithms. The proposed algorithm identifies inappropriate local selections using special futuristic conditions to prevent them as much as possible. Eventually, suitable choices determine and discard the improper ones. The proposed algorithm illustrates an asymptotic approximation ratio of (t/ (t-1)) OPT, where the value of t depends on the distribution of the arrived and departed items. Also, OPT is the number of bins by an optimal solution. Finally, in experiments of datasets using a maximum utilization of 80% of each bin, the average migration rate is 0.338. Using the proposed method for allocating resources in the cloud environment can allocate hosts to a virtual machine using almost optimal use. This allocation can reduce the cost of maintaining and purchasing hosts. Also, this method can reduce the migration rate of virtual machines. As a result, decreasing migration improves the energy consumption cost in the cloud environment.


2016 ◽  
Vol 2 ◽  
pp. e47 ◽  
Author(s):  
Eli M. Dow

In this paper, we describe a novel solution to the problem of virtual machine (VM) consolidation, otherwise known as VM-Packing, as applicable to Infrastructure-as-a-Service cloud data centers. Our solution relies on the observation that virtual machines are not infinitely variable in resource consumption. Generally, cloud compute providers offer them in fixed resource allocations. Effectively this makes all VMs of that allocation type (or instance type) generally interchangeable for the purposes of consolidation from a cloud compute provider viewpoint. The main contribution of this work is to demonstrate the advantages to our approach of deconstructing the VM consolidation problem into a two-step process of multidimensional bin packing. The first step is to determine the optimal, but abstract, solution composed of finite groups of equivalent VMs that should reside on each host. The second step selects concrete VMs from the managed compute pool to satisfy the optimal abstract solution while enforcing anti-colocation and preferential colocation of the virtual machines through VM contracts. We demonstrate our high-performance, deterministic packing solution generation, with over 7,500 VMs packed in under 2 min. We demonstrating comparable runtimes to other VM management solutions published in the literature allowing for favorable extrapolations of the prior work in the field in order to deal with larger VM management problem sizes our solution scales to.


Sign in / Sign up

Export Citation Format

Share Document