Characterization of Fuzzy δg*-Closed Sets in Fuzzy Topological Spaces

2016 ◽  
Vol 5 (2) ◽  
pp. 1-12
Author(s):  
Anahid Kamali ◽  
Hamid Reza Moradi

The purpose of this research article is to explain the meaning of g-closed sets in fuzzy topological spaces, which is more understandable to the readers and we find some of its basic properties. The concept of fuzzy sets was introduced by Zadeh in his classical paper (1965). Thereafter many investigations have been carried out, in the general theoretical field and also in different applied areas, based on this concept. The idea of fuzzy topological space was introduced by Chang (1968). The idea is more or less a generalization of ordinary topological spaces. Different aspects of such spaces have been developed, by several investigators. This paper is also devoted to the development of the theory of fuzzy topological spaces.

Author(s):  
Hamid Reza Moradi

A nonzero fuzzy open set () of a fuzzy topological space is said to be fuzzy minimal open (resp. fuzzy maximal open) set if any fuzzy open set which is contained (resp. contains) in is either or itself (resp. either or itself). In this note, a new class of sets called fuzzy minimal open sets and fuzzy maximal open sets in fuzzy topological spaces are introduced and studied which are subclasses of open sets. Some basic properties and characterization theorems are also to be investigated.


1991 ◽  
Vol 14 (2) ◽  
pp. 309-314 ◽  
Author(s):  
M. N. Mukherjee ◽  
S. P. Sinha

The paper contains a study of fuzzyθ-closure operator,θ-closures of fuzzy sets in a fuzzy topological space are characterized and some of their properties along with their relation with fuzzyδ-closures are investigated. As applications of these concepts, certain functions as well as some spaces satisfying certain fuzzy separation axioms are characterized in terms of fuzzyθ-closures andδ-closures.


The main view of this article is the extended version of the fine topological space to the novel kind of space say fine fuzzy topological space which is developed by the notion called collection of quasi coincident of fuzzy sets. In this connection, fine fuzzy closed sets are introduced and studied some features on it. Further, the relationship between fine fuzzy closed sets with certain types of fine fuzzy closed sets are investigated and their converses need not be true are elucidated with necessary examples. Fine fuzzy continuous function is defined as the inverse image of fine fuzzy closed set is fine fuzzy closed and its interrelations with other types of fine fuzzy continuous functions are obtained. The reverse implication need not be true is proven with examples. Finally, the applications of fine fuzzy continuous function are explained by using the composition.


2012 ◽  
Vol 2012 ◽  
pp. 1-7
Author(s):  
Amit Kumar Singh ◽  
Rekha Srivastava

In this paper we have studied separation axiomsTi,i=0,1,2in an intuitionistic fuzzy topological space introduced by Coker. We also show the existence of functorsℬ:IF-Top→BF-Topand𝒟:BF-Top→IF-Topand observe that𝒟is left adjoint toℬ.


2004 ◽  
Vol 2004 (70) ◽  
pp. 3829-3837
Author(s):  
Doğan Çoker ◽  
A. Haydar Eş ◽  
Necla Turanli

The purpose of this paper is to prove a Tychonoff theorem in the so-called “intuitionistic fuzzy topological spaces.” After giving the fundamental definitions, such as the definitions of intuitionistic fuzzy set, intuitionistic fuzzy topology, intuitionistic fuzzy topological space, fuzzy continuity, fuzzy compactness, and fuzzy dicompactness, we obtain several preservation properties and some characterizations concerning fuzzy compactness. Lastly we give a Tychonoff-like theorem.


2011 ◽  
Vol 4 (1) ◽  
pp. 21
Author(s):  
D. M. Ali ◽  
F. A. Azam

In this paper, we introduce six R1-axioms for fuzzy topological spaces (in short, fts). We study their interrelations, goodness and initialities. Besides we recall nine R0-axioms for fts. A complete answer is given with regard to all possible (R1=>R0)-type implications for fts.Keywords: Fuzzy topological space; Fuzzy R1-axiom; Fuzzy R0-axiom.© 2012 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi:10.3329/jsr.v4i1.7044               J. Sci. Res. 4 (1), 21-32  (2012) 


Author(s):  
Parimala Mani ◽  
Karthika M ◽  
jafari S ◽  
Smarandache F ◽  
Ramalingam Udhayakumar

Neutrosophic nano topology and Nano ideal topological spaces induced the authors to propose this new concept. The aim of this paper is to introduce a new type of structural space called neutrosophic nano ideal topological spaces and investigate the relation between neutrosophic nano topological space and neutrosophic nano ideal topological spaces. We define some closed sets in these spaces to establish their relationships. Basic properties and characterizations related to these sets are given.


2021 ◽  
pp. 1-11
Author(s):  
O.R. Sayed ◽  
N.H. Sayed ◽  
Gui-Xiu Chen

In the present paper, a characterization of the intuitionistic fuzzy sets, the interval-valued intuitionistic fuzzy sets and their set-operations are given. By making use of these characterizations, the relationships between the interval-valued intuitionistic fuzzy topology and four fuzzy topologies associated to it are studied. For this reason, some subclasses of the family of interval-valued intuitionistic fuzzy topologies on a set which we call pre-suitable and suitable are introduced. Furthermore, the concepts of homeomorphism functions and compactness in the framework of interval-valued intuitionistic fuzzy topological spaces are introduced and studied.


2021 ◽  
Vol 5 (2) ◽  
pp. 102-108
Author(s):  
Srinivasan R ◽  
Kamalakkanni M

The purpose of this paper is to introduce and study the compactness in intuitionistic fuzzy topological spaces. Here we define two new notions of intuitionistic fuzzy compactness in intuitionistic fuzzy topological space and find their relation. Also we find the relationship between intuitionistic general compactness and intuitionistic fuzzy compactness. Here we see that our notions satisfy hereditary and productive property.


2005 ◽  
Vol 2005 (1) ◽  
pp. 19-32 ◽  
Author(s):  
A. A. Ramadan ◽  
S. E. Abbas ◽  
A. A. Abd El-Latif

We introduce fuzzy almost continuous mapping, fuzzy weakly continuous mapping, fuzzy compactness, fuzzy almost compactness, and fuzzy near compactness in intuitionistic fuzzy topological space in view of the definition of Šostak, and study some of their properties. Also, we investigate the behavior of fuzzy compactness under several types of fuzzy continuous mappings.


Sign in / Sign up

Export Citation Format

Share Document