An Empirical Study on Software Fault Prediction Using Product and Process Metrics

Author(s):  
Raed Shatnawi ◽  
Alok Mishra

Product and process metrics are measured from the development and evolution of software. Metrics are indicators of software fault-proneness and advanced models using machine learning can be provided to the development team to select modules for further inspection. Most fault-proneness classifiers were built from product metrics. However, the inclusion of process metrics adds evolution as a factor to software quality. In this work, the authors propose a process metric measured from the evolution of software to predict fault-proneness in software models. The process metrics measures change-proneness of modules (classes and interfaces). Classifiers are trained and tested for five large open-source systems. Classifiers were built using product metrics alone and using a combination of product and the proposed process metric. The classifiers evaluation shows improvements whenever the process metrics were used. Evolution metrics are correlated with quality of software and helps in improving software quality prediction for future releases.

Author(s):  
Golnoush Abaei ◽  
Ali Selamat

Quality assurance tasks such as testing, verification and validation, fault tolerance, and fault prediction play a major role in software engineering activities. Fault prediction approaches are used when a software company needs to deliver a finished product while it has limited time and budget for testing it. In such cases, identifying and testing parts of the system that are more defect prone is reasonable. In fact, prediction models are mainly used for improving software quality and exploiting available resources. Software fault prediction is studied in this chapter based on different criteria that matters in this research field. Usually, there are certain issues that need to be taken care of such as different machine-learning techniques, artificial intelligence classifiers, variety of software metrics, distinctive performance evaluation metrics, and some statistical analysis. In this chapter, the authors present a roadmap for those researchers who are interested in working in this area. They illustrate problems along with objectives related to each mentioned criterion, which could assist researchers to build the finest software fault prediction model.


Author(s):  
Golnoush Abaei ◽  
Ali Selamat

Quality assurance tasks such as testing, verification and validation, fault tolerance, and fault prediction play a major role in software engineering activities. Fault prediction approaches are used when a software company needs to deliver a finished product while it has limited time and budget for testing it. In such cases, identifying and testing parts of the system that are more defect prone is reasonable. In fact, prediction models are mainly used for improving software quality and exploiting available resources. Software fault prediction is studied in this chapter based on different criteria that matters in this research field. Usually, there are certain issues that need to be taken care of such as different machine-learning techniques, artificial intelligence classifiers, variety of software metrics, distinctive performance evaluation metrics, and some statistical analysis. In this chapter, the authors present a roadmap for those researchers who are interested in working in this area. They illustrate problems along with objectives related to each mentioned criterion, which could assist researchers to build the finest software fault prediction model.


2012 ◽  
pp. 371-387 ◽  
Author(s):  
Cagatay Catal ◽  
Soumya Banerjee

Artificial Immune Systems, a biologically inspired computing paradigm such as Artificial Neural Networks, Genetic Algorithms, and Swarm Intelligence, embody the principles and advantages of vertebrate immune systems. It has been applied to solve several complex problems in different areas such as data mining, computer security, robotics, aircraft control, scheduling, optimization, and pattern recognition. There is an increasing interest in the use of this paradigm and they are widely used in conjunction with other methods such as Artificial Neural Networks, Swarm Intelligence and Fuzzy Logic. In this chapter, we demonstrate the procedure for applying this paradigm and bio-inspired algorithm for developing software fault prediction models. The fault prediction unit is to identify the modules, which are likely to contain the faults at the next release in a large software system. Software metrics and fault data belonging to a previous software version are used to build the model. Fault-prone modules of the next release are predicted by using this model and current software metrics. From machine learning perspective, this type of modeling approach is called supervised learning. A sample fault dataset is used to show the elaborated approach of working of Artificial Immune Recognition Systems (AIRS).


Author(s):  
Cagatay Catal ◽  
Soumya Banerjee

Artificial Immune Systems, a biologically inspired computing paradigm such as Artificial Neural Networks, Genetic Algorithms, and Swarm Intelligence, embody the principles and advantages of vertebrate immune systems. It has been applied to solve several complex problems in different areas such as data mining, computer security, robotics, aircraft control, scheduling, optimization, and pattern recognition. There is an increasing interest in the use of this paradigm and they are widely used in conjunction with other methods such as Artificial Neural Networks, Swarm Intelligence and Fuzzy Logic. In this chapter, we demonstrate the procedure for applying this paradigm and bio-inspired algorithm for developing software fault prediction models. The fault prediction unit is to identify the modules, which are likely to contain the faults at the next release in a large software system. Software metrics and fault data belonging to a previous software version are used to build the model. Fault-prone modules of the next release are predicted by using this model and current software metrics. From machine learning perspective, this type of modeling approach is called supervised learning. A sample fault dataset is used to show the elaborated approach of working of Artificial Immune Recognition Systems (AIRS).


Sign in / Sign up

Export Citation Format

Share Document