State-of-the-Art Neural Networks Applications in Biology

Author(s):  
Arianna Filntisi ◽  
Nikitas Papangelopoulos ◽  
Elena Bencurova ◽  
Ioannis Kasampalidis ◽  
George Matsopoulos ◽  
...  

Artificial neural networks (ANNs) are a well-established computational method inspired by the structure and function of biological central nervous systems. Since their conception, ANNs have been utilized in a vast variety of applications due to their impressive information processing abilities. A vibrant field, ANNs have been utilized in bioinformatics, a general term for describing the combination of informatics, biology and medicine. This article is an effort to investigate recent advances in the area of bioinformatical applications of ANNs, with emphasis in disease diagnosis, genetics, proteomics, and chemoinformatics. The combination of neural networks and game theory in some of these application is also discussed.

2017 ◽  
Vol 62 (2) ◽  
pp. 280-294 ◽  
Author(s):  
Piotr Skrzypczyk ◽  
Małgorzata Pańczyk-Tomaszewska

2013 ◽  
Vol 154 (2) ◽  
pp. 43-51 ◽  
Author(s):  
Judit Nagy

Chronic kidney disease is a general term for heterogenous disorders with >3 months duration affecting kidney structure and function. Nowadays, involving 10–16% of the adult population worldwide, chronic kidney disease is recognised as a major global public health problem. The number of cases is continuously increasing. In this review, epidemiology, definition, new classification and a conceptual model for development, progression and complications of chronic kidney disease as well as strategies to improve outcome are summarized. Orv. Hetil., 2013, 154, 43–51.


2014 ◽  
Vol 6 (245) ◽  
pp. 245sr2-245sr2 ◽  
Author(s):  
Sangeeta N. Bhatia ◽  
Gregory H. Underhill ◽  
Kenneth S. Zaret ◽  
Ira J. Fox

Despite the tremendous hurdles presented by the complexity of the liver’s structure and function, advances in liver physiology, stem cell biology and reprogramming, and the engineering of tissues and devices are accelerating the development of cell-based therapies for treating liver disease and liver failure. This State of the Art Review discusses both the near- and long-term prospects for such cell-based therapies and the unique challenges for clinical translation.


Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2453
Author(s):  
Gary A. Cuthbert ◽  
Faheem Shaik ◽  
Michael A. Harrison ◽  
Sreenivasan Ponnambalam ◽  
Shervanthi Homer-Vanniasinkam

The process of atherosclerosis leads to the formation of plaques in the arterial wall, resulting in a decreased blood supply to tissues and organs and its sequelae: morbidity and mortality. A class of membrane-bound proteins termed scavenger receptors (SRs) are closely linked to the initiation and progression of atherosclerosis. Increasing interest in understanding SR structure and function has led to the idea that these proteins could provide new routes for cardiovascular disease diagnosis, management, and treatment. In this review, we consider the main classes of SRs that are implicated in arterial disease. We consider how our understanding of SR-mediated recognition of diverse ligands, including modified lipid particles, lipids, and carbohydrates, has enabled us to better target SR-linked functionality in disease. We also link clinical studies on vascular disease to our current understanding of SR biology and highlight potential areas that are relevant to cardiovascular disease management and therapy.


1988 ◽  
Vol 69 (2) ◽  
pp. 155-170 ◽  
Author(s):  
James T. Rutka ◽  
Gerard Apodaca ◽  
Robert Stern ◽  
Mark Rosenblum

✓ The extracellular matrix (ECM) is the naturally occurring substrate upon which cells migrate, proliferate, and differentiate. The ECM functions as a biological adhesive that maintains the normal cytoarchitecture of different tissues and defines the key spatial relationships among dissimilar cell types. A loss of coordination and an alteration in the interactions between mesenchymal cells and epithelial cells separated by an ECM are thought to be fundamental steps in the development and progression of cancer. Although a substantial body of knowledge has been accumulated concerning the role of the ECM in most other tissues, much less is known of the structure and function of the ECM in the nervous system. Recent experiments in mammalian systems have shown that an increased knowledge of the ECM in the nervous system can lead to a better understanding of complex neurobiological processes under developmental, normal, and pathological conditions. This review focuses on the structure and function of the ECM in the peripheral and central nervous systems and on the importance of ECM macromolecules in axonal regeneration, cerebral edema, and cerebral neoplasia.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Marta Barba ◽  
Claudia Cicione ◽  
Camilla Bernardini ◽  
Fabrizio Michetti ◽  
Wanda Lattanzi

Adipose tissue represents a hot topic in regenerative medicine because of the tissue source abundance, the relatively easy retrieval, and the inherent biological properties of mesenchymal stem cells residing in its stroma. Adipose-derived mesenchymal stem cells (ASCs) are indeed multipotent somatic stem cells exhibiting growth kinetics and plasticity, proved to induce efficient tissue regeneration in several biomedical applications. A defined consensus for their isolation, classification, and characterization has been very recently achieved. In particular, bone tissue reconstruction and regeneration based on ASCs has emerged as a promising approach to restore structure and function of bone compromised by injury or disease. ASCs have been used in combination with osteoinductive biomaterial and/or osteogenic molecules, in either static or dynamic culture systems, to improve bone regeneration in several animal models. To date, few clinical trials on ASC-based bone reconstruction have been concluded and proved effective. The aim of this review is to dissect the state of the art on ASC use in bone regenerative applications in the attempt to provide a comprehensive coverage of the topics, from the basic laboratory to recent clinical applications.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 739
Author(s):  
Giulia Paiardi ◽  
Maria Milanesi ◽  
Rebecca C. Wade ◽  
Pasqualina D’Ursi ◽  
Marco Rusnati

Glycosaminoglycans (GAGs) are linear polysaccharides. In proteoglycans (PGs), they are attached to a core protein. GAGs and PGs can be found as free molecules, associated with the extracellular matrix or expressed on the cell membrane. They play a role in the regulation of a wide array of physiological and pathological processes by binding to different proteins, thus modulating their structure and function, and their concentration and availability in the microenvironment. Unfortunately, the enormous structural diversity of GAGs/PGs has hampered the development of dedicated analytical technologies and experimental models. Similarly, computational approaches (in particular, molecular modeling, docking and dynamics simulations) have not been fully exploited in glycobiology, despite their potential to demystify the complexity of GAGs/PGs at a structural and functional level. Here, we review the state-of-the art of computational approaches to studying GAGs/PGs with the aim of pointing out the “bitter” and “sweet” aspects of this field of research. Furthermore, we attempt to bridge the gap between bioinformatics and glycobiology, which have so far been kept apart by conceptual and technical differences. For this purpose, we provide computational scientists and glycobiologists with the fundamentals of these two fields of research, with the aim of creating opportunities for their combined exploitation, and thereby contributing to a substantial improvement in scientific knowledge.


Sign in / Sign up

Export Citation Format

Share Document