Park’s Transformation for Electric Power Quality Recognition and Classification in Distribution Networks

2012 ◽  
Vol 1 (2) ◽  
pp. 60-79 ◽  
Author(s):  
Ahmad M. AL Kandari ◽  
Jamal Y. Madouh ◽  
Soliman A. Soliman ◽  
Rashid A. Alammari

This paper presents a novel algorithm for recognizing and classifying the power quality events based on Park’s transformation, where the three rotating abc phases are transferred to three equivalent stationary dq0 phases (d-q reference frame). This transformation is implemented, either for three-phase or single phase circuits. The proposed algorithm transferred the utility signal to a complex phasor (transformation from time domain to frequency domain). The magnitude of this phasor depends on the magnitude of the signal either a three-phase or a single phase signal. The proposed technique produces the complex phasor loci that depend on the type of power quality event; voltage sags, voltage flickers, voltage swell, and harmonics. The time of starting the disturbance is chosen randomly and the length of disturbance is arbitrary. Implementation of this technique is succeeded in recognizing and classifying the power quality events. Simulated results are presented within the text, for three-phase and single phase events.

2018 ◽  
Vol 58 ◽  
pp. 03016 ◽  
Author(s):  
I.V Naumov ◽  
N.V. Savina ◽  
M.V. Shevchenko

One of the main operation modes that characterizes power quality in distribution networks is asymmetry of three-phase voltage system. Operation of an induction motor (IM) with disturbed voltage symmetry in the supply network can not be considered as a rated one. The system of voltages applied to the stator winding of IM under these conditions contains positive- and negative-sequence components. This worsens the performance characteristics of IM essentially. In order to balance the 0.38 kV network operation and enhance the efficiency of the three-phase electric motor operation it is suggested to use a special balancing unit (BU) that minimizes the negative-sequence components of current and voltage. The operation modes of the obtained system “supply source – induction motor – balancing unit” are simulated within the MATLAB software package of applied programs, which allows one to assess the impact of low quality of power on the operating characteristics of the electric motor and the efficiency of the balancing unit to increase the “durability” of the motor under the asymmetrical power consumption.


2014 ◽  
Vol 687-691 ◽  
pp. 3411-3414
Author(s):  
Jia Yong Chen ◽  
Kun Ya Guo ◽  
Peng Jin ◽  
Shu Han Wang

Electrified railway traction transformer is a pivot that connects the electric locomotive and the public grid. Therefore, power quality problems caused by electric locomotive such as three-phase voltage imbalance, great voltage fluctuation and high harmonic content can be transmitted to the public grid via the traction transformer. To solve this problem, the solution of two sets of single-phase SVG (Static Var Generator) in back-to-back operation to solve power quality problems of the electrified railway is raised. This solution has been proved by practice effective in improving power quality of the traction transformer.


Author(s):  
Jairo Blanco Solano ◽  
Jorge Luis Jagua ◽  
Johann F. Petit Suarez ◽  
Gabriel Ordonez Plata ◽  
Victor Barrera Nunez

2019 ◽  
Vol 16 (3) ◽  
pp. 289-310 ◽  
Author(s):  
Vinay Naguboina ◽  
Satish Gudey

In this work, a Three phase Transformerless Hybrid Series Active Power Filter (THSeAF) based on Sliding Mode Control (SMC) is proposed to mitigate the voltage and current distortions present in an electrical distribution systems (EDS). A Sliding Mode Controller is designed by controlling the parameters present on the load side as well as source side of the system. Three separate voltage source converters (VSC) are used. The mod1elling of the system is derived by considering a single-phase system by using state space analysis. The frequency response characteristics have been derived for the single-phase system and the stability of the system is studied. It is observed that the system has good stability margins when the SMC is applied at the source side compared to load side. Simulation results obtained in PSCAD/EMTDC v4.6 have been observed for power quality issues like voltage sags, voltage swells, voltage distortions, voltage unbalances and their concurrent occurrence. The approach of stationary reference frame was used for source side control and PQ theory is used for load side control. It is observed that the proposed controller works well in obtaining a stable and constant load voltage during these power quality issues. The difference in settling time observed is around 4 ms for the load side and source side control. The THD present in the load voltage is near about 1%. The SMC is found to be robust in obtaining a constant load voltage with low THD and an improved power factor.


2021 ◽  
Vol 2094 (5) ◽  
pp. 052012
Author(s):  
I V Naumov ◽  
S V Podyachikh

Abstract The experimental studies result on the power quality and additional power losses analysis caused by the asymmetric modes occurrence in three-phase four-wire 0.38 kV electrical networks are considered. The operating modes 38 kV networks several types simulation – with power take-off nodes distributed along the power line, and an electric network with a concentrated load is carried out. The programs have been developed that allow to assess the change in indicators characterizing asymmetric modes, as well as programs that allow us to visualize this process change. The most installing special symmetrical devices appropriate places in electric networks with a distributed load (rural electric distribution networks) and concentrated power take-off nodes electric networks (urban electric networks) have been identified to minimize losses and improve the power quality. A numerical studied indicators analysis was performed.


2014 ◽  
Vol 875-877 ◽  
pp. 1923-1928 ◽  
Author(s):  
Surya Hardi ◽  
Ismail Daut ◽  
Ismail Rohana ◽  
Muhd Hafizi

Voltage sags and interruption are one of most important of power quality problems. They can influence performance of equipment such as induction motors. They are generally caused by short circuit faults in transmission and distribution systems which propagate in entire of power systems. When their appear at a motor terminal, its effects are the speed and the torque will decrease to a level lower than values of the normal and even the motor become stall if magnitude of the voltage sags and duration exceed certain limit. The voltage can return to nominal voltage after end of the voltage sag and interruption. The motor will experience re-acceleration to normal condition is accompanied by large inrush current. A study on induction motors was carried out to confirm these effects. Single-phase and three-phase of small induction motors were used for investigating the effects caused by symmetrical voltage sags and interruption through experimental and simulation.


Sign in / Sign up

Export Citation Format

Share Document