The Reinforcement Rib Performance Prediction Based on the BP Algorithm and the Finite Element Analysis

2011 ◽  
Vol 101-102 ◽  
pp. 212-215
Author(s):  
Liang Yao Su ◽  
Xiang Sheng Li ◽  
Xiong Fei Yin ◽  
Xiao Yan Feng ◽  
Shang Wen Ruan

The reinforcement rib design is one of the key parts in entire bottle design. This paper presents the rib performance prediction system based on the BP algorithm and the finite element analysis, which adopts the finite element analysis results as its learning samples, sets up the rib performance prediction system with BP artificial neural network. The results show that the artificial neural network plays an important role in rib performance prediction; meanwhile it can guide the bottle design in practical terms.

2012 ◽  
Author(s):  
Norhisham Bakhary

Kertas kerja ini memaparkan kajian berkenaan keberkesanan Artificial Neural Network (ANN) dalam mengenal pasti kerosakan di dalam struktur. Data dari getaran seperti frekuensi semula jadi dan mod bentuk digunakan sebagai data masukan bagi ANN untuk meramalkan lokasi dan tahap kerosakan bagi struktur lantai. Analisis unsur terhingga (Finite Element Analysis) telah digunakan untuk memperoleh ciri–ciri dinamik bagi struktur–struktur rosak dan tidak rosak untuk ‘melatih’ model ‘neural network’. Senario kerosakan yang berbeza disimulasikan dengan mengurangkan kekukuhan elemen pada lokasi yang berbeza sepanjang struktur tersebut. Berbagai kombinasi data masukan bagi mod yang berbeza telah digunakan untuk memperolehi model ANN yang terbaik. Hasil kajian ini menunjukkan ANN mampu memberikan keputusan yang baik dalam meramal kerosakan pada struktur lantai tersebut. Kata kunci: Ramalan kerosakan struktur, Artificial Neural Network This paper investigates the effectiveness of artificial neural network (ANN) in identifying damages in structures. Global (natural frequencies) and local (mode shapes) vibration–based data has been used as the input to ANN for location and severity prediction of damages in a slab–like structure. A finite element analysis has been used to obtain the dynamic characteristics of intact and damaged structure to train the neural network model. Different damage scenarios have been introduced by reducing the local stiffness of the selected elements at different locations along the structure. Several combinations of input variables in different modes have been used in order to obtain a reliable ANN model. The trained ANN model is validated using laboratory test data. The results show that ANN is capable of providing acceptable result on damage prediction of tested slab structure. Key words: Structural damage detection, artificial neural network


2019 ◽  
Vol 24 (37) ◽  
pp. 4474-4483 ◽  
Author(s):  
Alireza Karimi ◽  
Najme Meimani ◽  
Reza Razaghi ◽  
Seyed Mohammadali Rahmati ◽  
Khosrow Jadidi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document