Influence of Water Pipe Cooling on Thermal Stresses in Mass Concrete

2011 ◽  
Vol 137 ◽  
pp. 12-15
Author(s):  
Xin Li Bai ◽  
Ze Yu Wu ◽  
Wen Liang Ma ◽  
Dan Fei Wang

Temperature field and stress field of a concrete slab in a ship lock chamber are calculated, considering the influence of layered casting. And the influence of water pipe cooling at the early period of constructing, and at the period after constructing, sunshade, pre-cooled concrete etc are taken into account. The expression of finite difference method considering the effect of water pipe cooling is deducted for temperature analysis. Thermal stress calculation results show that the water pipe cooling at the mid-late period is a comparatively effective measure to reduce tensile stress of chamber mass concrete. And an effective temperature control measure is recommended in summer casting, which is that: sunshade + pre-cooled concrete + water pipe cooling (both at early period and at mid-late period). Mid-late period water pipe cooling must last for three months. Combined with other temperature control measures such as summer cover maintenance, winter cover preservation etc, the concrete cracks can be reduced, and the occurrence of large area run through cracks can be avoided.

2013 ◽  
Vol 405-408 ◽  
pp. 2739-2742 ◽  
Author(s):  
Zhen Hong Wang ◽  
Shu Ping Yu ◽  
Yi Liu

To solve the problem of cracks developing on thin-walled concrete structures during construction, the authors expound on the causes of cracks and the crack mechanism. The difference between external and internal temperatures, basic temperature difference and constraints are the main reasons of crack development on thin-walled concrete structures. Measures such as optimizing concrete mixing ratio, improving construction technology, and reducing temperature difference can prevent thin-walled concrete structures from cracking. Moreover, water-pipe cooling technology commonly used in mass concrete can be applied to thin-walled concrete structures to reduce temperature difference. This method is undoubtedly a breakthrough in anti-cracking technology for thin-walled concrete structures, particularly for thin-walled high-performance concrete structures. In addition, a three-dimensional finite element method is adopted to simulate the calculation of temperature control and anti-cracking effects f. Results show the apparent temperature controlling effect of water-pipe cooling for thin-walled concrete structures.


2013 ◽  
Vol 467 ◽  
pp. 262-269
Author(s):  
Fu Liang Gao ◽  
Yan Wei Fang

According to the case that mass concrete in solid sections of lower pylon column of Jiashao Bridge was easy to crack in construction because of the bigger section size, larger content of cementitious material and lower water binder ratio, the temperature and thermal stresses distribution of mass concrete was simulated and temperature control scheme was adjusted constantly based on the results of field temperature monitoring. Through taking some temperature control measures such as applying circulating cooling water and prolonging the time appropriately, thermal insulation and moisture retention curing, extending the form removal time and controlling the quality of concrete, harmful cracks did not appear in solid sections of lower pylon column of Jiashao Bridge and anticipated temperature control requirements were achieved.


2013 ◽  
Vol 444-445 ◽  
pp. 849-853
Author(s):  
Jian Hua Cui ◽  
Yong Feng Qi ◽  
Jie Su

Under the action of annual change and sudden drop of air temperature, thermal induced cracking will occur in concrete dam during the operation period. For exploring the temperature control measures for crack prevention, taking a concrete gravity dam section as the research object, sensitivity analyses to the factors which affecting the water-cooling effect are conducted with 3D FEM, some significant suggestions for the water cooling are presented. The results show that, the stresses of the dam surface will decrease to a certain extent after water cooling in the operation period using the cooling water pipe which embedded during construction period, and the cracking risk of the dam will reduce. The study provides a new train of thought for the temperature control and crack prevention of the mass concrete during the operation period.


2012 ◽  
Vol 226-228 ◽  
pp. 1153-1156 ◽  
Author(s):  
Shu Ping Huang ◽  
Jian Yun Fu ◽  
Yan Cai Li

With the continuous development of dam construction technology, the RCC dam becomes one of the most popular types of dam in the world with its unique advantages. Temperature control measures research is one of the key issues of design and construction of mass concrete structures. How to choose the proper temperature control measures to prevent concrete cracks becomes the important problem of dam construction technology. In a RCC gravity dam, the climate environment is so severe that a single temperature control measure can’t meet the requirements of temperature control and crack prevention. In this paper, 3D FEM simulation analysis is used to calculate temperature field and thermal creep stress field during the whole construction process. According to the simulation results, the temperature control measures design of the dam has been comprehensively evaluated and the temperature control measures of this project have been put forward.


2019 ◽  
Vol 23 (3 Part A) ◽  
pp. 1615-1621 ◽  
Author(s):  
Ben-Gao Yang ◽  
Peng He ◽  
Gao-You Peng ◽  
Tong Lu

Thermal damage control of mass concrete is the key to guarantee the quality of mass projects. Based on several engineering experiences and finite element software ANSYS, the temperature field and stress field of the typical dam section of the Tengzigou hydropower station in Sichuan province were simulated. Considering the actual materials used, cooling measures, etc., maximum tensile stress and compressive stress at different time points derived from the temperature stress field during the time of concrete maintenance were calculated, and the numerical results showed that strength increment under the given conditions was much less than the actual condition. After the concrete of the dam body of the hydro power station were poured, there was no significant temperature stress crack appeared through a long-term observation, and the project condition was in tune with the calculated expectation. The above research results are valuable to further prediction of concrete temperature in different periods, the pre-study of the effect of temperature control measures, and these could offer guidance of the adjustment of temperature control measures in the case of abnormal conditions.


2013 ◽  
Vol 357-360 ◽  
pp. 884-887
Author(s):  
Yao Ying Huang ◽  
Yue Mei Ding ◽  
Xiao Man Lv ◽  
Teng Fei Tang

Related to temperature control measures and material parameters, crack prevention by temperature control in quasi-mass concrete is an optimization problem including multiple complicated factors. This study tries to do some optimization of temperature control measures in the given concrete thermodynamics parameters circumstance. The quasi-mass concrete structure’s minimum value of the relationship between principal tensile stress duration curves of internal and surface and the tensile strength growth curve are taken as the input, and the gate pier surface heat preservation effect, pouring temperature, water cooling temperature, water cooling time are taken as the output, we establish the optimal temperature control measures by the neural network model. Applying the uniform design principle to combine the temperature control parameters, and using the finite element method to analyze the temperature field and creep stress field in the quasi-mass concrete structure containing cooling water pipes, we obtain the samples, for training the network, to describe the nonlinear relationship between the principal tension stress duration curve and the tension strength growth curve and the different temperature control measures. After inputting the fitting minimum value of relationship between the principal tension stress duration curve and the tension strength growth curve to the trained network, the system is able to automatically select the optimal temperature control measures for crack prevention. The example shows that the proposed optimal neural network model for temperature control measures is feasible.


2021 ◽  
Vol 9 ◽  
Author(s):  
Fuxian Zhu ◽  
Guorong Chen ◽  
Feng Zhang ◽  
Qingwen Li

Water pipe cooling is mainly used to control temperature in the construction of mass concrete structures. It is important to reveal how to accurately stimulate the temperature field of mass concrete under action of this water pipe cooling. This paper presents a new method for this purpose. In this method, the contact surface of the water pipe and the concrete is used as the heat dissipation surface into the control equation and the composite Multiquadrics radial basis function (MQ-RBF) and low-order linear polynomial combination are used to discrete the spatial domain. The heat dissipation surface of the water pipe is included in the boundary conditions so that there is no need to build the refined water pipe modeling. This new method not only reduces the calculation cost but also ensures calculation accuracy. Through four calculation examples, this paper show that the algorithm has advantages in the numerical simulation of the concrete temperature field with water pipe cooling.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yaoying Huang ◽  
Tong Xie ◽  
Chunguang Li ◽  
Xiaohui Yin

The measured temperature of a concrete pouring block depends strongly on the position of the buried thermometer. Only when the temperature measured by the thermometer accurately reflects the actual temperature of the concrete pouring block do reasonable temperature-control measures become possible. However, little research has been done on how to determine the proper position of thermometers buried in a concrete pouring block embedded with cooling pipes. To address this situation, we develop herein a method to determine the position of thermometers buried in a concrete pouring block. First, we assume that the design temperature-control process line characterizes the average-temperature history of the concrete pouring block. Under this assumption, we calculate the average-temperature history of the concrete pouring block by using the water-pipe-cooling FEM, following which the temperature history of an arbitrary point in the concrete pouring block is obtained by interpolating the shape function. Based on the average-temperature history of the concrete pouring block and the temperature history of the arbitrary point, we build a mathematical model to optimize the buried position of the thermometer and use the optimization algorithm to determine this position. By using this method, we establish finite-element models of concrete prisms with four typical water-pipe spacing cases for concrete-dam engineering and obtain the geometric position of the thermometers by using the optimization algorithm. By burying thermometers at these positions, the measured temperature should better characterize the average-temperature history of the concrete pouring block, which can provide useful information for regulating the temperature of concrete pouring blocks.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Zhenhong Wang ◽  
Li Tao ◽  
Yi Liu ◽  
Jiang Yunhui

The focus on the development of China’s vast hydropower resources has shifted to Tibet and other plateau regions. These areas are high-altitude regions whose basic climatic characteristics are as follows: dry climate, significant differences in daily temperature, and strong solar radiation. If a dam is built under such special climate conditions, specific and strict temperature control and crack prevention measures should be taken. Therefore, this study explores the temperature control standards, as well as temperature control and crack prevention measures, for concrete in high-altitude regions using three-dimensional finite element methods and based on the concrete gravity dam in Tibet in combination with the characteristics of material properties that are disadvantageous to temperature control and crack prevention. The temperature drop process can be optimized in time, and the temperature drop rate can be controlled to prevent excessive scale and temperature drop rates. Moreover, the temperature gradient can be spatially optimized, and thus, the differences in foundation temperatures, upper- and lower-layer temperatures, and internal and external temperatures can also be reduced. The research shows that the recommended temperature control and crack prevention measures can effectively reduce temperature stress. This study has a significant value as a reference for similar projects in high-altitude regions.


Sign in / Sign up

Export Citation Format

Share Document