The Vibro-Acoustic Characteristics of the Cylindrical Shell Partially Submerged in the Fluid

2012 ◽  
Vol 170-173 ◽  
pp. 2303-2311 ◽  
Author(s):  
Wen Bing Ye ◽  
Tian Yun Li ◽  
Xiang Zhu

The characteristics of the sound radiation and vibrational power flow of the partially submerged cylindrical shell under a harmonic excitation are studied. The approximate acoustic boundary of the free surface is used to solve the fluid domain. The structure-fluid coupling equation is established based on the Flügge and Helmholtz theories. The far-field sound pressure is calculated and compared with that in infinite field. It is found that the far-field sound pressure presents large gap in different immersion status in the presence of the free surface while the results of the input power flow in these cases have less differences.

2017 ◽  
Vol 139 (4) ◽  
Author(s):  
T. Y. Li ◽  
P. Wang ◽  
X. Zhu ◽  
J. Yang ◽  
W. B. Ye

A sound–structure interaction model is established to study the vibroacoustic characteristics of a semisubmerged cylindrical shell using the wave propagation approach (WPA). The fluid free surface effect is taken into account by satisfying the sound pressure release condition. Then, the far-field sound pressure is predicted with shell's vibration response using the stationary phase method. Modal coupling effect arises due to the presence of the fluid free surface. New approaches are proposed to handle this problem, i.e., diagonal coupling acoustic radiation model (DCARM) and column coupling acoustic radiation model (CCARM). New approaches are proved to be able to deal with the modal coupling problem efficiently with a good accuracy at a significantly reduced computational cost. Numerical results also indicate that the sound radiation characteristics of a semisubmerged cylindrical shell are quite different from those from the shell fully submerged in fluid. But the far-field sound pressure of a semisubmerged shell fluctuates around that from the shell ideally submerged in fluid. These new approaches can also be used to study the vibroacoustic problems of cylindrical shells partially coupled with fluid.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Wenjie Guo ◽  
Zhou Yang ◽  
Yueyang Han

The vibration response and far-field sound radiation of a semisubmerged, finite cylindrical shell with low-frequency excitation are studied. The solution to this problem can be divided into two steps. The first step is to apply the wave propagation approach to determine the vibration response of the cylindrical shell. In the cylindrical coordinate system, the Flügge shell equations and Laplace equation are used to describe the cylindrical shell and surrounding fluid so that the vibration responses of the shell can be addressed analytically. The fluid free surface effect is taken into account by applying the sine series to force the velocity potential on the free surface to be zero. Furthermore, compared with the FEM (the finite element method), the present method is not only reliable but also effective. In the second step, the far-field sound radiation is solved by the Fourier transform technique and the stationary phase method in accordance with the vibration responses of the shell from the previous step. The boundary element method is applied to validate the reliability of the acoustical radiation calculation. The circumferential directivity of far-field sound pressure is discussed, and it is found that the maximum value of the sound pressure always appears directly under the structure when the driving frequencies are relatively low. Besides, in consideration of simplicity and less computation effort, the present method can be used for the rapid prediction of the vibration and far-field sound pressure of a semisubmerged cylindrical shell with low-frequency excitation.


2014 ◽  
Vol 136 (3) ◽  
pp. 1054-1064 ◽  
Author(s):  
T. Y. Li ◽  
Y. Y. Miao ◽  
W. B. Ye ◽  
X. Zhu ◽  
X. M. Zhu

2018 ◽  
Vol 2018 ◽  
pp. 1-19
Author(s):  
Jingxi Liu ◽  
Wentao He ◽  
De Xie

The characteristics of vibrational power flow in an infinite laminated composite cylindrical shell filled with fluid excited by a circumferential line cosine harmonic force are investigated using wave propagation approach. The harmonic motions of the shell and the fluid filled in the shell are described by Love shell theory and acoustic wave equation, respectively. Under the driving force, the vibrational power flow input into the coupled system and the transmission of the power flow carried by different internal forces (moments) of the shell in the axial direction are established. Numerical computations are implemented to investigate the vibrational power flow input and its propagation. It is found that characteristics of the vibrational power flow vary with different circumferential mode orders and frequencies, and the presence of fluid in the shell significantly affects the vibration of the shell structure. Additionally, parametric investigations are carried out to study the effects of the fiber orientation, modulus ratio E11/E22, and thickness-to-radius parameter h/R on input power into the coupled system and propagation power along the shell axial direction. This work will provide some guidance for the vibration control of the laminated composite cylindrical shell.


2011 ◽  
Vol 105-107 ◽  
pp. 321-325 ◽  
Author(s):  
Jin Yan ◽  
Juan Zhang

The vibrational power flow in a submerged infinite cylindrical shell with internal rings and bulkheads are studied analytically. The harmonic motion of the shell and the pressure field in the fluid is described by Flügge shell theory and Helmholtz equation, respectively. The coupling condition on the outer surface of the shell wall is introduced to obtain the vibrational equation of this coupled system. Both four kinds of forces (moments) between rings and shell and between bulkheads and shell are considered. The solution is obtained in series form by expanding the system responses in terms of the space harmonics of the spacing of both ring stiffeners and bulkheads. The vibrational power flow and radiated sound power are obtained and the influences of various complicating effects such as the ring, bulkhead and fluid loading on the results are analyzed. The analytic model is close to engineering practice, which will be valuable to the application on noise and vibration control of submarines and underwater pipes.


Author(s):  
Yun Wang ◽  
Gangtie Zheng

The vibration power flow in a submerged infinite constrained layer damping (CLD) cylindrical shell is studied in the present paper using the wave propagation approach. Dynamic equations of the shell are derived with the Hamilton principle in conjunction with the Donnell shell assumptions. Besides, the pressure field in the fluid is described by the Helmholtz equation and the damping characteristics are considered with the complex modulus method. Then, the shell-fluid coupling dynamic equations are obtained by using the coupling between the shell and the fluid. Vibration power flows inputted to the coupled system and transmitted along the shell axial direction are both studied. Results show that input power flow varies with driving frequency and circumferential mode order, and the constrained damping layer will restrict the exciting force inputting power flow into the shell, especially for a thicker viscoelastic layer, a thicker or stiffer constraining layer (CL), and a higher circumferential mode order. Cut-off frequencies do not exist in the CLD cylindrical shell so that the exciting force can input power flow into the shell at any frequency and for any circumferential mode order. The power flow transmitted in the CLD cylindrical shell exhibits an exponential decay form along its axial direction, which indicates that the constrained damping layer has a good damping effect especially at middle or high frequencies.


2014 ◽  
Vol 86 ◽  
pp. 126-137 ◽  
Author(s):  
Hassen Trabelsi ◽  
Majdi Abid ◽  
Mohamed Taktak ◽  
Tahar Fakhfakh ◽  
Mohamed Haddar
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document