Mitigation of Wind-Rain-Induced Cable Vibration in Cable-Stayed Bridges: Measurement Error

2012 ◽  
Vol 226-228 ◽  
pp. 1630-1633
Author(s):  
Ling Yun Wang

Recent advances in structural and construction technologies have enabled engineers to use the cable efficiently in relatively large structures such as long span cable-stayed bridges. It appeared that many factors and phenomena can generate cable vibration. The cables usually possess low damping and are therefore prone to many vibration problems, even causing large displacement. The active control method has been introduced to control the cable vibration in the cable-stayed bridges. The active control method is an effective method to suppress cable vibrations by adjusting the cable tension which is varied with time. This approach utilizes the axial motion of cables supported by an actuator installed at the anchorage to produce a time-varying force in the cable. To synthesize the feedback control signal, the cable vibration is measured by an optical tracking sensor attached at the mid-span cable. The studies are carried out to investigate the measurement error features of the control method as a design guideline.

2018 ◽  
Vol 15 (7) ◽  
pp. 075101 ◽  
Author(s):  
H L Yu ◽  
Z X Zhang ◽  
X L Wang ◽  
R T Su ◽  
H W Zhang ◽  
...  

2021 ◽  
Author(s):  
Ali Durdu ◽  
Yılmaz Uyaroğlu

Abstract Many studies have been introduced in the literature showing that two identical chaotic systems can be synchronized with different initial conditions. Secure data communication applications have also been made using synchronization methods. In the study, synchronization times of two popular synchronization methods are compared, which is an important issue for communication. Among the synchronization methods, active control, integer, and fractional-order Pecaro Carroll (P-C) method was used to synchronize the Burke-Shaw chaotic attractor. The experimental results showed that the P-C method with optimum fractional-order is synchronized in 2.35 times shorter time than the active control method. This shows that the P-C method using fractional-order creates less delay in synchronization and is more convenient to use in secure communication applications.


2021 ◽  
pp. 1-20
Author(s):  
Yixin Zhang ◽  
Wei Pan ◽  
Shuo Zhan ◽  
Ran Huang ◽  
Shujiang Chen ◽  
...  

Abstract Studies show that active control technology can improve system performance and meet the increasing industrial demand in diverse applications. In the present study, the dynamic characteristics of the bearing-spindle system based on active piezoelectric (PZT) restrictors, including the amplitude-frequency and phase-frequency characteristics are analyzed theoretically and experimentally. In the analysis, the influence of the pipeline model on the system characteristics is studied. Then the feasibility and effectiveness of the active control method are verified through experiments. It is demonstrated that the theoretical and experimental results are consistent. The present study is expected to provide a guideline for further investigations on the structural optimization and control law design for active hydrostatic oil-film bearing spindle systems.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Seunghoo Jeong ◽  
Young-Joo Lee ◽  
Sung-Han Sim

As the construction of long-span bridges such as cable-stayed bridges increases worldwide, maintaining bridge serviceability and operability has become an important issue in civil engineering. The stay cable is a principal component of cable-stayed bridges and is generally lightly damped and intrinsically vulnerable to vibration. Excessive vibrations in stay cables can potentially cause long-term fatigue accumulation and serviceability issues. Previous studies have mainly focused on the mitigation of cable vibration within an acceptable operational level, while little attention has been paid to the quantitative assessment of serviceability enhancement provided by vibration control. This study accordingly proposed and evaluated a serviceability assessment method for stay cables equipped with vibration control. Cable serviceability failure was defined according to the range of acceptable cable responses provided in most bridge design codes. The cable serviceability failure probability was then determined by means of the first-passage problem using VanMarcke’s approximation. The proposed approach effectively allows the probability of serviceability failure to be calculated depending on the properties of any installed vibration control method. To demonstrate the proposed method, the stay cables of the Second Jindo Bridge in South Korea were evaluated and the analysis results accurately reflected cable behavior during a known wind event and show that the appropriate selection of vibration control method and properties can effectively reduce the probability of serviceability failure.


Sign in / Sign up

Export Citation Format

Share Document