Study of the Dynamic Behavior of Face Gear Transmission System

2012 ◽  
Vol 268-270 ◽  
pp. 1063-1066 ◽  
Author(s):  
Zhi Wang ◽  
Qing Chen ◽  
Jia Chun Lin ◽  
Li Li Yang

According to the gear meshing theory, the tooth surface equation of orthogonal face gear is derived and the mathematical model is established. Also the model was provided for simulating the bevel gear transmission system concerning the time variant stiffness and face gears errors under static load and cyclic loads. Through the model the computerized analysis of speed, angle and acceleration of gear real tooth surface could be accomplished. Rattle as discussed under condition of different static loads and the constant cyclic loads.

2013 ◽  
Vol 834-836 ◽  
pp. 1273-1280
Author(s):  
Ze Hua Hu ◽  
Jin Yuan Tang ◽  
Si Yu Chen

The periodic and chaotic dynamic responses of face gear transmission system considering time-varying mesh stiffness and backlash nonlinearity are studied. Firstly, a nonlinear time-varying dynamic model of face gear pair is developed and the motion equations are presented, the real accurate mesh stiffness is obtained by applying Finite element approach. Then, the dynamic equations are solved using Runge-Kutta numerical integral method and bifurcation diagrams are presented and analyzed. The stability properties of steady state responses are illustrated with Floquet multipliers and Lyapunov exponents. The results show that a process of periodic-chaotic-periodic motion exists with the dimensionless pinion rotational frequency as control parameters. The analysis can be a reference to avoid the chaotic motion and unstable periodic motion through choosing suitable rotational frequency.


2011 ◽  
Vol 52-54 ◽  
pp. 1375-1381
Author(s):  
Wei Zhou ◽  
Li Hong Lin ◽  
Xiao An Chen

Electromechanical coupling effect must be considered in the dynamic analysis of permanent magnet AC servo-driven precision gear transmission system. According to the global coupling and local coupling analysis in servo-driven system, the global electromechanical coupling relation diagram of whole system and the local electromechanical coupling relation diagram of the permanent magnet synchronous motor-precision gear transmission subsystem are established. For this subsystem, a physical model is built up. And a mathematical model is constituted by using Lagrange-Maxwell equation, that is the dynamic equation of the subsystem. The mathematical model can provide theoretical basis for follow-up researches.


Author(s):  
Jinyuan Tang ◽  
Zehua Hu ◽  
Siyu Chen ◽  
Duncai Lei

The effects of directional rotation radius and transmission error excitation on the nonlinear dynamic characteristics of face gear transmission system are analyzed. First, the accurate time-varying mesh stiffness is calculated using finite element method, and the nonlinear motion equation of the system under static transmission error excitation is proposed. The frequency response curve, time history curve, dynamic mesh force curve and dynamic factor curve are given, and the phenomena of jump, multiple solutions and tooth impact are observed. The numerical results show that the effect of amplitude variation of directional rotation radius on the dynamic characteristics of face gear pair is less conspicuous than that of transmission error but actually existing. The amplitude of the dynamic response of face gear pair reduces to some extent with the uniform distribution of the loading area through enlarging the amplitude variation of directional rotation radius. The static transmission error excitation should be reduced to perfect the transmission property. The system is in periodic motion most of the time, and tooth impact occurs only near [Formula: see text] . Since its dynamic property at low velocity and high velocity is good, the system should get through the resonant area quickly in work.


2013 ◽  
Vol 135 (7) ◽  
Author(s):  
Zehua Hu ◽  
Jinyuan Tang ◽  
Siyu Chen ◽  
Duncai Lei

The effect of mesh stiffness on the dynamic response of face gear transmission system combining with backlash nonlinearity is studied. First, a nonlinear time-varying (NLTV) and a nonlinear time-invariant (NLTI) dynamic models of face gear transmission system with backlash nonlinearity are formulated. The 6DOF motion equations of the face gear pair considering the mesh stiffness, backlash, contact damping and supporting stiffness are proposed. Second, the effect of mesh stiffness on the dynamic response of the face gear drive system is analyzed with the numerical method, where the mesh stiffness is expressed in two patterns as time-varying form and time-invariant form. According to the comparative study, some significant phenomena as bifurcation, chaos, tooth separation and occurrence of multijump are detected. The results show that different forms of mesh stiffness generate an obvious change on the dynamic mesh force.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhengming Xiao ◽  
Fu Chen ◽  
Kongliang Zhang

Multistage planetary gear transmission system has been widely utilized in engineering practice due to the salient characteristics, such as high bearing load and large speed ratio. This paper addresses a two-stage planetary gearbox and establishes a system coupling torsional dynamical model which considers the time-varying mesh stiffness, friction forces, and interstage coupling factors. Meanwhile, the friction and lubrication states are classified to comprehensively analyze the calculation of friction coefficients under different conditions. Considering the time-varying influence of friction on the tooth surface under the condition of fluid lubrication, the vibration response under parametric excitation is solved by a numerical method. A multistage planetary transmission test bench is built in the back-to-back form so as to test the vibration of the two-stage planetary gearbox. It shows that the simulation results of the dynamical model are consistent with the test data. Consideration of the calculation of friction on the tooth surface and the friction coefficients is helpful for the establishment of the more accurate dynamical model and lays the foundation for the structural design, fault diagnosis, and dynamic optimization of the multistage planetary gear transmission system.


2014 ◽  
Vol 1061-1062 ◽  
pp. 743-747
Author(s):  
Chang Li ◽  
Bing Chen Wang ◽  
Jun Feng Li

Based on comprehensive considerations the influences of stiffness excitation, deviation excitation, meshing impact excitation, friction of tooth surface, and other kinds of nonlinear factors, it established a nonlinear coupled vibration model of bending-torsion-axial-swing coupled helical gear transmission system by applying the Lumped Mass Method. After transformed the model to dimensionless form, it used Runge-Kutta method to solve the nonlinear vibration model of the system, and then the time domain chart, spectrum chart, phase chart, Poincare chart, and FFT chart were obtained; it discussed the influence of system parameters on its dynamic characteristics.


Sign in / Sign up

Export Citation Format

Share Document