Estimation of Eccentric Distance for Four-Tooth End Mills Based on Amplitude Spectrum

2013 ◽  
Vol 278-280 ◽  
pp. 207-211
Author(s):  
Can Liu ◽  
Jing Quan Wu ◽  
Guang Hui Li ◽  
Guang Yu Tan

Time-domain expressions of nominal component and eccentric component that composing horizontal peripheral milling force are derived from geometry of down milling, they are periodic functions with fundamental frequencies same as tooth-frequency and spindle-frequency respectively. By expanding these two time-domain expressions with Taylor series, the frequency-domain description of periheral milling force is obtained. Further mathematical reasoning is exerted on this frequency-domain description, and it proved that as for four-tooth end mills, even-order harmonics of eccentric milling force do not exist, and the amplitude of spindle-frequency component be linear with eccentric distance, but irrelevant with eccentric angle. Above research results imply that the tooth-frequency component of four-tooth end mills is irrelevant with eccentricity, and that eccentric distance can be estimated with amplitudes of tooth-frequency and spindle-frequency components. Results of milling experiment imply that this eccentric-distance estimating method be effective. Spectral characteristics of eccentric milling force for four-tooth end mills are revealed with theory deduction, and the estimation algorithm for eccentric distance with simple calculation is present. Study conclusions can be used in eccentric-geometry estimating and in milling-force modeling.

Particles ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 70-89 ◽  
Author(s):  
Kenichi Oguchi ◽  
Makoto Okano ◽  
Shinichi Watanabe

We review our recent works on polarization-sensitive electro-optic (PS-EO) sampling, which is a method that allows us to measure elliptically-polarized terahertz time-domain waveforms without using wire-grid polarizers. Because of the phase mismatch between the employed probe pulse and the elliptically-polarized terahertz pulse that is to be analyzed, the probe pulse senses different terahertz electric-field (E-field) vectors during the propagation inside the EO crystal. To interpret the complex condition inside the EO crystal, we expressed the expected EO signal by “frequency-domain description” instead of relying on the conventional Pockels effect description. Using this approach, we derived two important conclusions: (i) the polarization state of each frequency component can be accurately measured, irrespective of the choice of the EO crystal because the relative amplitude and phase of the E-field of two mutually orthogonal directions are not affected by the phase mismatch; and, (ii) the time-domain waveform of the elliptically-polarized E-field vector can be retrieved by considering the phase mismatch, absorption, and the effect of the probe pulse width. We experimentally confirm the above two conclusions by using different EO crystals that are used for detection. This clarifies the validity of our theoretical analysis based on the frequency-domain description and the usefulness of PS-EO sampling.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Changhai Lin ◽  
Sifeng Liu ◽  
Zhigeng Fang ◽  
Yingjie Yang

PurposeThe purpose of this paper is to analyze the spectral characteristics of moving average operator and to propose a novel time-frequency hybrid sequence operator.Design/methodology/approachFirstly, the complex data is converted into frequency domain data by Fourier transform. An appropriate frequency domain operator is constructed to eliminate the impact of disturbance. Then, the inverse Fourier transform transforms the frequency domain data in which the disturbance is removed, into time domain data. Finally, an appropriate moving average operator of N items is selected based on spectral characteristics to eliminate the influence of periodic factors and noise.FindingsThrough the spectrum analysis of the real-time data sensed and recorded by microwave sensors, the spectral characteristics and the ranges of information, noise and shock disturbance factors in the data can be clarified.Practical implicationsThe real-time data analysis results for a drug component monitoring show that the hybrid sequence operator has a good effect on suppressing disturbances, periodic factors and noise implied in the data.Originality/valueFirstly, the spectral analysis of moving average operator and the novel time-frequency hybrid sequence operator were presented in this paper. For complex data, the ideal effect is difficult to achieve by applying the frequency domain operator or time domain operator alone. The more satisfactory results can be obtained by time-frequency hybrid sequence operator.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Mian Zhong ◽  
Bingwei Liu ◽  
Chen Li ◽  
Zhiqi Wang ◽  
Dongshan Wei ◽  
...  

Composite materials have increasingly become a high proportion of the structural weight of aircraft due to their excellent performances. Different types of damages may occur in the aircraft service period, which will bring potential safety risks to aircrafts. To investigate the defect damage detection and its spectral characteristics and imaging of carbon-fiber-reinforced polymer composite laminates, defects from the low-velocity impact damage in composites were measured by the THz time-domain reflection imaging system. Results show that there exists obvious THz spectral differences between the impact damaged defects and nondefect. The effective detection frequency band for the low-speed impact damaged defect is 0.12–2.0 THz. In the time domain, there are attenuations and delays in the spectra of defects relative to those of nondefects. In the frequency domain, with the increase of frequency, the power spectral density of the defect first increases and then decreases, and the absorption coefficient increases slowly. In general, the imaging results in time-domain imaging are better than those from the frequency-domain imaging, which not only is suitable for the qualitative detection of defects but also has great potential and application prospects in quantitative detection. This work shows an important guide for the application of THz technology to detect the composite material defects in civil aircraft.


Author(s):  
ERDEM KÖSE ◽  
ALİ KÖKSAL HOCAOĞLU

Ground vehicle detection and classification with distributed sensor networks is of growing interest for border security. Different sensing modalities including electro-optical, seismic, and acoustic were evaluated individually and in combination to develop a more efficient system. Despite previous works that mostly studied frequency-domain features and acoustic sensors, in this work we analyzed the classification performance for both frequency and time-domain features and seismic and acoustic modalities. Despite their infrequent use, we show that when fused with frequency-domain features, time-domain features improve the classification performance and reduce the false positive rate, especially for seismic signals. We investigated the performance of seismic sensors and showed that the classification performance varies with the type of road due to the distinct spectral characteristics of the medium. Our proposed classifier fuses time and frequency-domain features and acoustic and seismic modalities to achieve the highest classification rate of 98.6% using a relatively small number of features.


1991 ◽  
Author(s):  
F L Walls ◽  
John Gary ◽  
Abbie O'Gallagher ◽  
Roland Sweet ◽  
Linda Sweet

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7003
Author(s):  
Wanying Nie ◽  
Minli Zheng ◽  
Shicheng Xu ◽  
Yuexiu Liu ◽  
Haibin Yu

The damping performance of unequal tooth milling cutters is controlled by the pitch parameters. How to improve the vibration damping and dynamic balance of milling cutters needs to be further studied. This paper analyzes the pitch angle through the stability of the lobe diagram and the spectral characteristics, and unequal-pitch end mills with asymmetric structure were determined to have better cutting stability. Due to the principle error of the asymmetrical tool, dynamic balance accuracy is poor. The dynamic balance of the tool is analyzed, and the centroid model of the tool is established. In order to improve the dynamic balance accuracy of tools, the parameters of the groove shape are analyzed and optimized, and balance accuracy is improved. Through modal and milling-force analysis, the relative vibration displacement and cutting force of the optimized tool were reduced by 17% and 10%, respectively, which determined that such tools have better dynamic performance. Here, unequal tooth end mills could reduce vibration and had higher accuracy in dynamic balance by adjusting the parameters of the pitch angles and chip pockets, so that the tool could have higher cutting stability.


Author(s):  
L. F. Zheglov ◽  
A. B. Fominykh

The article is a sequel to studies of the nonlinear vibration isolation systems of a vehicle. The first published papers considered an application of the known methods of statistical linearization when determining the vibration safety performance in the frequency domain. The frequency domain is the most adaptive in the context of analysis of the obtained calculation results and evaluation of the initial dynamic system features. Therefore, a problem to determine the adequacy range of such calculations in the frequency and time domain is relevant.The paper deals with the problem of creating a technique to determine and analyze the spectral characteristics of the vehicle vibration isolation system when modeling in the time domain. Considers as an object, a nonlinear dynamic system equivalent to the nonlinear vibration isolation system of a vehicle under its spatial vibrations. In formulating a system of equations-of-motion of the adopted system a module-based method was used. As an example, the power unit is given. Modeling of input random perturbations, provided that the solutions obtained are adequate, is based on the recurrent difference equations. The subsequent transformation of the calculation results into the frequency domain is based on the finite Fourier transforms.To determine the final parameters which characterise the effectiveness of the vibration isolation system, at the first stage of calculations the dynamic system was tested in a linear setting.The vector of natural frequencies of a conservative system defined in the frequency domain was compared with the spectrum of natural frequencies (the frequency response) calculated in the time domain. Besides, the article has carried out a conformity evaluation of the amplitude-frequency characteristics obtained in the frequency and time domain and their determining accuracy. The obtained positive results made it possible to compare and analyze the spectral characteristics of vibration signals and dynamic system in its nonlinear and linearized formulation. The coherence function, the amplitude-frequency characteristic, the spectral density of perturbation and output vibration signal, the vehicle suspension and tyre load characteristics are considered as the analyzed ones. The article compares the output characteristics of the dynamic system under consideration for the case in linear, linearized, and nonlinear formulation of the problem.


Author(s):  
J.-J. Junz Wang ◽  
C. M. Zheng

For a generalized helical end mill, this paper presents a frequency domain force model considering the ploughing as well as the shearing mechanisms. The differential chip load and the corresponding cutting forces are first formulated through differential geometry for a general helical cutting edge. The differential cutting force is assumed to be a linear function of the chip load with a proportional shearing force and a constant ploughing force. The total milling force in the angle domain is subsequently composed through convolution integration and analyzed by Fourier analysis. The frequency domain model has the parameters of a general milling process all integrated in a single framework with their roles clearly defined so that Fourier coefficients of the milling force can be obtained for any analytically definable helical cutter. Applications are illustrated for three common helical cutters: the cylindrical, taper, and ball end mills. Furthermore, as an inverse application, a linear algebraic equation is formulated for the identification of six cutting constants from the average forces of two slot milling tests. Demonstration and verification of the milling force model as well as the identification of cutting constants are carried out through experiments with three types of milling cutters.


2021 ◽  
Vol 78 (1) ◽  
pp. 41-48
Author(s):  
Zhanxin Sha ◽  
Zhaoxian Zhou ◽  
Boyi Dai

Abstract This study aimed to analyze counter-movement jump (CMJ) performance in time and frequency domains. Fortyfour Division I American football players participated in the study. Kinetic variables were collected from both dominant and non-dominant legs using two force plates. Normalized peak power, normalized net impulse, and normalized peak force significantly correlated with jump height (r = .960, r = .998, r = .725, respectively with p < .05). The mean frequency component was significantly correlated with CMJ performance (r = .355 with p < .05). The reliability of the frequency variables was higher than the time domain variables. Frequency domain variables showed weaker correlations with jump height compared with time domain variables. Frequency domain analysis provides frequency components, which represent the rate of energy transmission from the eccentric phase to the end of the push-off phase. Frequency component information may provide additional information for the analyses of CMJ performance for athletes.


Sign in / Sign up

Export Citation Format

Share Document