Dynamic Simulation for Grid-Connected Inverters of Distributed Generation Based on DIgSILENT Software

2013 ◽  
Vol 291-294 ◽  
pp. 2042-2046
Author(s):  
Zhang Le Zhao ◽  
You Bing Zhang ◽  
Jun Qi

This paper introduces some typical control methods for the grid-connected inverters in the distributed generation (DG) systems, the double-loop control strategy is focused on and analyzed in detail. The proposed outer-loop control strategies are summarized. Meanwhile, the inner-loop control method established on dq rotating frame is introduced. The simulation models of the inverters for DG in the DIgSILENT software are introduced, and the simulations for the proposed control strategies are realized.

2021 ◽  
Vol 50 (4) ◽  
pp. 736-751
Author(s):  
Ludmila Vesjolaja ◽  
Bjørn Glemmestad ◽  
Bernt Lie

Granulation is a particle enlargement process during which fine particles or atomizable liquids are converted into granules via a series of complex granulation mechanisms. In this paper, two feedback control strategies are implemented to make granulation loop processes more steady to operate, i.e., to suppress oscillatory behavior in the produced granule sizes. In the first control strategy, a classical proportional-integral (PI) controller is used, while in the second, a double-loop control strategy is used to control the median diameter of the granules leaving the granulator. The simulation results showed that using the proposed control design for the granulation loop can eliminate the oscillatory behaviour in the produced granule median diameter and make granulation loop processes more steady to operate. A comparison between the two proposed control strategies showed that it is preferable to use the double-loop control strategy.


Author(s):  
Shweta Kumari ◽  
Pulakraj Aryan ◽  
G. Lloyds Raja

Abstract The design of control methods for unstable plants is somewhat complex than that of stable plants. This is because unstable process models contain one or more poles lying on the right of the s-plane which yields unbounded closed-loop response. Further, the presence of the dead-time induces more complexity as it decreases the gain and phase margins which in turn deteriorates the closed-loop performance. The design of control strategies become more challenging for plants of unstable nature with positive zeros because they exhibit a phenomenon called inverse response. This paper suggests a method to design a double-loop scheme for unstable plants with/without inverse response. Accordingly, a proportional-derivative (PD)/proportional (P) controllers are used in the inner-loop for stabilizing the plant. A fractional order internal model controller (FOIMC) scheme is used to obtain the outer-loop controller using the stabilized plant model. The P/PD controller settings have been obtained by using the Routh-stability criteria and the maximum sensitivity approach. Procedure for selecting the outer-loop tuning parameter and fractional order is also given. Linear and nonlinear models of unstable plants including bioreactors and isothermal chemical reactors are used to demonstrate the merits of the suggested strategy. Robustness of the design and effect of measurement noise are also studied. Integrated absolute/squared error measures are also calculated. The suggested design is found to be more effective in controlling unstable processes than some reported works.


2018 ◽  
Vol 173 ◽  
pp. 02041
Author(s):  
Lin Chunxu ◽  
Zhou Chunhua ◽  
Li Wei ◽  
Chen Rui

In order to reduce the total harmonic distortion (THD) of the grid-connected current caused by the high-frequency switching of the inverter, this paper combines the high efficiency single-phase H6-type inverter with LCL filter. The double closed-loop control method that consists of grid-connected current outer loop and capacitor current inner loop is put forward, by which a resonance peak of a low damping LCL filter is eliminated. In the grid-connected current outer loop, quasi proportion resonant (QPR) controller is adopted to overcome the steady-state error and weak anti-jamming capability in traditional PI controller. Finally, a simulation model is built in SIMULINK to verify the research. The simulation results show that, based on the single-phase H6-type inverter and LCL filter, the double closed-loop QPR control strategy can achieve the static error free tracking control of grid-connected current, which makes the system more stable and reduces the THD of grid-connected current effectively.


2012 ◽  
Vol 433-440 ◽  
pp. 5794-5800
Author(s):  
Feng Zhou ◽  
Ke Wang ◽  
Jian Ye Chen ◽  
Hua Zhang

Microgrid is one of the promising solutions to interconnecting the renewable energy in the form of Distributed Generation with the utility grid, where the inverter control strategy for battery is essential. In this paper, a dual-loop control strategy is proposed for Vanadium Redox Battery inverter in islanding mode. The dual-loop control strategy consists of an inner-loop current control and an outer-loop voltage control, both of which adopt the classical PI controller. Further, the strategy applied in transient mode is also discussed. The proposed dual-loop control strategy has been tested in MATLAB/Simulink simulations and experimentally on a laboratory-scale system.


2006 ◽  
Vol 18 (05) ◽  
pp. 255-263
Author(s):  
YING-HAN CHIOU ◽  
JER-JUNN LUH ◽  
SHIH-CHING CHEN ◽  
JIN-SHIN LAI ◽  
TE-SON KUO

Control strategies are the chief attraction in the field of rehabilitation engineering, and especially in a functional electrical stimulation (FES) system, a reliable control method is important for paralyzed patients to restore lost their functions. In this paper, we have presented a demonstration of the control strategy, which is based on the patient-driven loop, used in a non-invasive FES system for hand function restoration. With the patient-driven loop control, hemiplegic patients could use their residual capabilities, such as shoulder movements in their sound extremities, the myoelectric signals generated from different muscles, etc, to operate the FES system. Here we have chosen the most common and acceptable signals as the input sources, i.e. electromyographic (EMG) signals, to control a non-invasive FES system, generating the electrical stimuli to excite the paralyzed muscles. In addition, EMG signals recorded by the sensors in the electrical stimulator can serve both as the trigger of the system and as the adjustment of the electrical stimulation parameters, thereby improving the system's performance and reliability. From the experimental results, subjects can successfully use their residual capabilities to control the FES system and restore their lost hand functions as well. On the other hand, from the viewpoints of rehabilitation and psychology, hemiplegics will benefit greatly by using their residual capabilities to regain their lost functions. It is believed that the patient-driven loop control is very useful, not only for the FES system in this study, but also for other assistive devices. By the control strategy proposed in this paper, we deeply hope that patients will benefit greatly and regain their self-confidence.


2013 ◽  
Vol 336-338 ◽  
pp. 547-550
Author(s):  
Ji Hong Zhang ◽  
Zhen Kui Wu ◽  
Hua Li ◽  
Han Shan Li

Micro grid may exert adequately distributed generation efficiency, and that wind Photovoltaic and Energy Storage is a key equipment in the micro grid. Aiming at the distributed generation existing intermittence and randomicity characteristic, the paper discussed the micro grid P/Q control method under the connection grid state and the micro grid U/F control method under the disconnection grid state. It also studied the distributed generation parameters variational law under the micro grid different run mode, and built the correlative mathematics model and tested by simulation. The results show: the control strategy ensured the mice grid running stably, and achieved the system anticipative design request, and offered theory foundation for the distributed generation extend application.


Sensors ◽  
2017 ◽  
Vol 17 (9) ◽  
pp. 2147 ◽  
Author(s):  
Dunzhu Xia ◽  
Limei Cheng ◽  
Yanhong Yao

2021 ◽  
Vol 2083 (2) ◽  
pp. 022099
Author(s):  
Chengyi Yue ◽  
Binbin Bei

Abstract Reducing the dependence of microgrid upon the communication system and realizing the efficient control of multiple distributed generation of the microgrid are problems that need to be solved urgently. Through the research, based on multiple microgrid operation modes, the peer-to-peer control strategy in microgrid is investigated, and the peer-to-peer control strategy method of microgrid is given for a variety of complex control problems of distributed power According to the peer-to-peer control strategy method, distributed power supply adopts droop control in adjusting distributed power supply in output voltage and frequency; the droop controller has P-f and Q-U droop characteristics. This paper establishes a peer-to-peer control microgrid simulation model, adopts the droop controller designed in this paper to island mode and grid-connected mode, and investigates how the microgrid switches between the two modes. In accordance with Matlab/Simulink simulation outcomes, the research examines frequency, voltage and power changes in distributed generation in the microgrid, and verifies the validity and feasibility of microgrid peer-to-peer control strategy.


2020 ◽  
Author(s):  
Lennard Kaven ◽  
Christian Leisten ◽  
Maximilian Basler ◽  
Moritz Schlösser ◽  
Uwe Jassmann ◽  
...  

Abstract. The current test process in design and certification of wind turbines (WTs) is time and cost intensive, as it depends on the wind conditions and requires the setup of the WT in the field. Efforts are made to transfer the test process to a system test bench (STB) whereby an easier installation is enabled and the load can be arbitrarily applied. However, on a STB the WT is installed without rotor and tower and the remaining drive train behaviour acts differently to the WT drive train in the field. The original behaviour must be restored by incorporating a Hardware-in.the-Loop (HiL) simulation into the operation of the STB. The HiL simulation consists of the virtual rotor and wind and the control of the applied loads. Furthermore, sensors as the wind vane and actors as the pitch drives, which are not present at the STB, are substituted by simulation models. This contribution investigates suitable HiL control methods of the applied torque. Herein, we survey three methods of different complexity and compare them in terms of performance, actuator requirements and robustness. The simplest method emulates the divergent inertia by classical control. A more complex method based on a reference model also considers the alternated dynamic behaviour of the drive train. Model predictive control (MPC) currently constitutes the most complex HiL method, as the MPC also includes future predictions of the driving torque behaviour. Our comparison identifies that increased complexity of the control method ensures enhanced preformance. WT drive train dynamics can be reproduced up to 1, 6, and 10 Hz for IE, MRC and MPC, respectively. Yet, for higher control complexity, the requirements for the dynamic torque proliferate and the controllers robustness to model deviations decreases.


Sign in / Sign up

Export Citation Format

Share Document