An Improved Adaptive Evolutionary Algorithm for Multi-Objective Optimization

2013 ◽  
Vol 303-306 ◽  
pp. 1494-1500
Author(s):  
Jian Wei Wang ◽  
Jian Ming Zhang

Aiming at effectively overcoming the disadvantages of traditional evolutionary algorithm which converge slowly and easily run into local extremism, an improved adaptive evolutionary algorithms is proposed. Firstly, in order to choose the optimal objective fitness value from the population in every generation, the absolute and relative fitness are defined. Secondly, fuzzy technique is adopted to adjust the weights of objective functions, crossover probability, mutation probability, crossover positions and mutation positions during the iterative process. Finally, three classical test functions are given to illustrate the validity of improved adaptive evolutionary algorithm, simulation results show that the diversity and practicability of the optimal solution set are better by using the proposed method than other multi-objective optimization methods.

2021 ◽  
pp. 1-21
Author(s):  
Xin Li ◽  
Xiaoli Li ◽  
Kang Wang

The key characteristic of multi-objective evolutionary algorithm is that it can find a good approximate multi-objective optimal solution set when solving multi-objective optimization problems(MOPs). However, most multi-objective evolutionary algorithms perform well on regular multi-objective optimization problems, but their performance on irregular fronts deteriorates. In order to remedy this issue, this paper studies the existing algorithms and proposes a multi-objective evolutionary based on niche selection to deal with irregular Pareto fronts. In this paper, the crowding degree is calculated by the niche method in the process of selecting parents when the non-dominated solutions converge to the first front, which improves the the quality of offspring solutions and which is beneficial to local search. In addition, niche selection is adopted into the process of environmental selection through considering the number and the location of the individuals in its niche radius, which improve the diversity of population. Finally, experimental results on 23 benchmark problems including MaF and IMOP show that the proposed algorithm exhibits better performance than the compared MOEAs.


2014 ◽  
Vol 701-702 ◽  
pp. 18-23
Author(s):  
Chun An Liu

It is well known that nonlinear equations systems (NESS) is a subclass of nonlinear optimization problem, it exists in many application fields, such as information industry, network design, mechanics and robotics, etc.. How to design feasible and effective optimization methods to obtain the optimal solution or satisfied precision requirement’s optimal solution for complicated NESS is very important in computation fields. In this paper, each nonlinear sub-equation of NESS is approximately regarded as a sub-objective function of multi-objective optimization problem, then the original nonlinear equations systems is transformed into a multi-objective optimization problem, and the equivalence relation of the solution between the original NESS and the transformed multi-objective optimization problem is given. In order to effectively solve the nonlinear equations systems, a self-adaptive levy mutation operation is proposed, and a multi-objective optimization evolutionary algorithm to solve the nonlinear equations systems was designed. Computer simulations demonstrate the proposed algorithm can not only increase the diversity of evolutionary population but also make the evolution population quickly to approach the optimal solution or satisfied precision requirement’s optimal solution.


2014 ◽  
Vol 22 (2) ◽  
pp. 189-230 ◽  
Author(s):  
Miqing Li ◽  
Shengxiang Yang ◽  
Jinhua Zheng ◽  
Xiaohui Liu

The Euclidean minimum spanning tree (EMST), widely used in a variety of domains, is a minimum spanning tree of a set of points in space where the edge weight between each pair of points is their Euclidean distance. Since the generation of an EMST is entirely determined by the Euclidean distance between solutions (points), the properties of EMSTs have a close relation with the distribution and position information of solutions. This paper explores the properties of EMSTs and proposes an EMST-based evolutionary algorithm (ETEA) to solve multi-objective optimization problems (MOPs). Unlike most EMO algorithms that focus on the Pareto dominance relation, the proposed algorithm mainly considers distance-based measures to evaluate and compare individuals during the evolutionary search. Specifically, in ETEA, four strategies are introduced: (1) An EMST-based crowding distance (ETCD) is presented to estimate the density of individuals in the population; (2) A distance comparison approach incorporating ETCD is used to assign the fitness value for individuals; (3) A fitness adjustment technique is designed to avoid the partial overcrowding in environmental selection; (4) Three diversity indicators—the minimum edge, degree, and ETCD—with regard to EMSTs are applied to determine the survival of individuals in archive truncation. From a series of extensive experiments on 32 test instances with different characteristics, ETEA is found to be competitive against five state-of-the-art algorithms and its predecessor in providing a good balance among convergence, uniformity, and spread.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Shungen Luo ◽  
Xiuping Guo

<p style='text-indent:20px;'>The microgrid technology, which can dispatch power independently, is an effective way to increase the efficiency of energy utilization meanwhile develop and utilize the clean and renewable energy. However, the power generation of a single microgrid is unstable, because it is greatly affected by the external environment. Therefore, the development and application of the multi-microgrid system have gradually drawn various countries' attention. In order to minimize the operating cost and gaseous pollutant emission of the multi-microgrid system, which is composed of renewable energies and electric vehicles and so on, this paper builds a 24 hours day-ahead multi-objective complex constrained optimization model, using interval optimization to handle uncertainties of renewable energies. In view of the model characteristics, the metaheuristic strategies about initialization and repair of solution are designed. Furthermore, the fuzzy membership degree and Chebyshev function are used in parallel to decompose the multi-objective optimization problem, thus a multi-objective evolutionary algorithm based on hybrid decomposition (MOEA/HD) is constructed. Finally, the effectiveness of the metaheuristic strategies can be verified by analyzing the simulation results in this paper. Moreover, the results prove that the MOEA/HD is more efficient, which can get a higher-quality Pareto optimal solution set when compared to other algorithms.</p>


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

There is a need for automatic log file template detection tool to find out all the log messages through search space. On the other hand, the template detection tool should cope with two constraints: (i) it could not be too general and (ii) it could not be too specific These constraints are, contradict to one another and can be considered as a multi-objective optimization problem. Thus, a novel multi-objective optimization based log-file template detection approach named LTD-MO is proposed in this paper. It uses a new multi-objective based swarm intelligence algorithm called chicken swarm optimization for solving the hard optimization issue. Moreover, it analyzes all templates in the search space and selects a Pareto front optimal solution set for multi-objective compensation. The proposed approach is implemented and evaluated on eight publicly available benchmark log datasets. The empirical analysis shows LTD-MO detects large number of appropriate templates by significantly outperforming the existing techniques on all datasets.


2014 ◽  
Vol 8 (1) ◽  
pp. 519-525
Author(s):  
Li-Mei Zhao ◽  
Lun-Jun Chen ◽  
Feng He ◽  
Yu Luo

In this study, a method of multi-objective optimization is proposed to improve the quality of crushed materials and vibration performance of the rotor. This method is driven by the first order natural frequency and the radius of the rotor. The Central Composite Design (CCD) experiment method was used to guide the selection of appropriate structure finite element analysis samples in design space. The quadratic polynomials were employed to construct response surface (RS) model based on the response outputs of these samples obtained by analyzing the first order natural frequency, the harmonic and mass with the software ANSYS. Well-distributed samples were generated in the design space by shifted Hamersley sampling method. The prominent points were selected by the weighing method as initial samples. The multiobjective genetic algorithm was used to obtain the Pareto optimal solution set. Through optimization, the first order natural frequency was increased by 5.5%; the radius of the rotor was enlarged by 2.5% and the amplitude of the vibration was decreased by 11% at the position of bearing. At the same time, the rotor mass did not change much. The results show strong engineering practicability of the proposed method.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

There is a need for automatic log file template detection tool to find out all the log messages through search space. On the other hand, the template detection tool should cope with two constraints: (i) it could not be too general and (ii) it could not be too specific These constraints are, contradict to one another and can be considered as a multi-objective optimization problem. Thus, a novel multi-objective optimization based log-file template detection approach named LTD-MO is proposed in this paper. It uses a new multi-objective based swarm intelligence algorithm called chicken swarm optimization for solving the hard optimization issue. Moreover, it analyzes all templates in the search space and selects a Pareto front optimal solution set for multi-objective compensation. The proposed approach is implemented and evaluated on eight publicly available benchmark log datasets. The empirical analysis shows LTD-MO detects large number of appropriate templates by significantly outperforming the existing techniques on all datasets.


2014 ◽  
Vol 543-547 ◽  
pp. 1959-1962
Author(s):  
Hao Ba ◽  
Bao Mei Qiu ◽  
Pei Pei Chen

Modern gasoline engine spark advanced angle calibration is a multi-objective optimization problem, commonly used genetic algorithm to solve this problem. However, the traditional genetic algorithm tends to local optimum probability of a larger, easy to fall into premature, this defect is likely to cause the solution is not the optimal solution set. To address this issue, the non-dominated sorting genetic algorithm II for the spark advanced angle optimization, through crowding distance maintain the diversity, overcome super individuals overgrowth, improved genetic algorithm post search results. Experimental results show the effectiveness of this method.


Sign in / Sign up

Export Citation Format

Share Document