Development of New Type Centralized Engineering Seismograph

2013 ◽  
Vol 333-335 ◽  
pp. 2412-2416
Author(s):  
Jin Feng Yan ◽  
Ming Deng ◽  
Yan Jun Li ◽  
Qi Sheng Zhang

SoPC technology is a high-performance, low-power consumption embedded system solution based on embedded microprocessor, providing a new way for developing new type centralized engineering seismograph. The paper presents the development of a new type centralized engineering seismograph based on SoPC technology, which adopts FPGA design based on SoPC technology for the hardware design and embedded software program development of the 48-channel engineering seismograph. According to actual needs of currently available centralized engineering seismograph, combining the actual characteristics of SoPC embedded technology, a portable, low-power consumption and high-performance new type centralized engineering seismograph is constructed. The paper describes the hardware design and software program implementation of the centralized engineering seismograph in detail.

2011 ◽  
Vol 55-57 ◽  
pp. 233-238
Author(s):  
Zheng Yuan Zhang ◽  
Jing Yin Li

ARM is the newest 32-bite RISC microprocessor. Its high performance, low power consumption and flexible extension make ARM particularly suitable for designing embedded system. Therefore, the realization of the FAT16 file system with ARM can satisfy the demand of file storage in embedded system. This article descripts the simple realization of FAT16 file system with ARM 7.


Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 937-945
Author(s):  
Ruihuan Zhang ◽  
Yu He ◽  
Yong Zhang ◽  
Shaohua An ◽  
Qingming Zhu ◽  
...  

AbstractUltracompact and low-power-consumption optical switches are desired for high-performance telecommunication networks and data centers. Here, we demonstrate an on-chip power-efficient 2 × 2 thermo-optic switch unit by using a suspended photonic crystal nanobeam structure. A submilliwatt switching power of 0.15 mW is obtained with a tuning efficiency of 7.71 nm/mW in a compact footprint of 60 μm × 16 μm. The bandwidth of the switch is properly designed for a four-level pulse amplitude modulation signal with a 124 Gb/s raw data rate. To the best of our knowledge, the proposed switch is the most power-efficient resonator-based thermo-optic switch unit with the highest tuning efficiency and data ever reported.


2021 ◽  
Vol 2021 ◽  
pp. 1-25
Author(s):  
John Nicot ◽  
Ludivine Fadel ◽  
Thierry Taris

The widespread deployment of the Internet of Things (IoT) requires the development of new embedded systems, which will provide a diverse array of different intelligent functionalities. However, these devices must also meet environmental, maintenance, and longevity constraints, while maintaining extremely low-power consumption. In this work, a batteryless, low-power consumption, compact embedded system for IoT applications is presented. This system is capable of using a combination of hybrid solar and radiofrequency power sources and operates in the 900 MHz ISM band. It is capable of receiving OOK or ASK modulated data and measuring environmental data and can transmit information back to the requester using GFSK modulated data. The total consumption of the system during its sleep state is 920 nW. Minimum power required to operate is −15.1 dBm or 70 lux, when using only radiofrequency or solar powering, respectively. The system is fully designed with components off the shelf (COTS).


2014 ◽  
Vol 3 (5-6) ◽  
Author(s):  
Tetsuya Kawanishi

AbstractThis paper describes wired and wireless seamless networks consisting of radiowave and optical fiber links. Digital coherent technology developed for high-speed optical fiber transmission can mitigate signal deformation in radiowave links in the air as well as in optical fibers. Radio-over-fiber (RoF) technique, which transmits radio waveforms on intensity envelops of optical signals, can provide direct waveform transfer between optical and radio signals by using optical-to-electric or electric-to-optical conversion devices. Combination of RoF in millimeter-wave bands and digital coherent with high-performance digital signal processing (DSP) can provide wired and wireless seamless links where bit rate of wireless links would be close to 100 Gb/s. Millimeter-wave transmission distance would be shorter than a few kilometers due to large atmospheric attenuation, so that many moderate distance wireless links, which are seamlessly connected to optical fiber networks should be required to provide high-speed mobile-capable networks. In such systems, reduction of power consumption at media converters connecting wired and wireless links would be very important to pursue both low-power consumption and large capacity.


2013 ◽  
Vol 373-375 ◽  
pp. 363-366
Author(s):  
Jing Sheng Yu ◽  
Hong Qiang Sun

It describes the basic principle of velocity parameters measuring of car in operation, establishes the related mathematical model. It disigns an intelligent, integrated digital solutions to combination instrumentation of the car based on MC9S12DP256B. This system has advantages of high performance, high precision, low cost, low power consumption, good stability, sensitive respond and expandability. The system measures and shows online velocity parameters of the car. It has fuction such as safety alarm. The system reserves bus interface such as SCI and CAN, correspondences easily with other electronic engine control systems of the car.


2013 ◽  
Vol 273 ◽  
pp. 722-725
Author(s):  
Shi Hong Lan ◽  
Jian Zhang

In the field of modern industrial control, PLC has become the important equipment in automatic control. With the development of semiconductor technology, chip technology, the embedded PLC chipset emerged. The chipset microcontroller cores, PLC system software is loaded with high-performance, low power consumption, small size and other characteristics. User to flexibly customize according to their needs, using chipsets embedded PLC. This paper described the PLC chip design and application.


Sign in / Sign up

Export Citation Format

Share Document