LASSO-Type Variable Selection Methods for High-Dimensional Data

2013 ◽  
Vol 444-445 ◽  
pp. 604-609
Author(s):  
Guang Hui Fu ◽  
Pan Wang

LASSO is a very useful variable selection method for high-dimensional data , But it does not possess oracle property [Fan and Li, 200 and group effect [Zou and Hastie, 200. In this paper, we firstly review four improved LASSO-type methods which satisfy oracle property and (or) group effect, and then give another two new ones called WFEN and WFAEN. The performance on both the simulation and real data sets shows that WFEN and WFAEN are competitive with other LASSO-type methods.

2018 ◽  
Vol 8 (2) ◽  
pp. 377-406
Author(s):  
Almog Lahav ◽  
Ronen Talmon ◽  
Yuval Kluger

Abstract A fundamental question in data analysis, machine learning and signal processing is how to compare between data points. The choice of the distance metric is specifically challenging for high-dimensional data sets, where the problem of meaningfulness is more prominent (e.g. the Euclidean distance between images). In this paper, we propose to exploit a property of high-dimensional data that is usually ignored, which is the structure stemming from the relationships between the coordinates. Specifically, we show that organizing similar coordinates in clusters can be exploited for the construction of the Mahalanobis distance between samples. When the observable samples are generated by a nonlinear transformation of hidden variables, the Mahalanobis distance allows the recovery of the Euclidean distances in the hidden space. We illustrate the advantage of our approach on a synthetic example where the discovery of clusters of correlated coordinates improves the estimation of the principal directions of the samples. Our method was applied to real data of gene expression for lung adenocarcinomas (lung cancer). By using the proposed metric we found a partition of subjects to risk groups with a good separation between their Kaplan–Meier survival plot.


Author(s):  
Frédéric Bertrand ◽  
Ismaïl Aouadi ◽  
Nicolas Jung ◽  
Raphael Carapito ◽  
Laurent Vallat ◽  
...  

Abstract Motivation With the growth of big data, variable selection has become one of the critical challenges in statistics. Although many methods have been proposed in the literature, their performance in terms of recall (sensitivity) and precision (predictive positive value) is limited in a context where the number of variables by far exceeds the number of observations or in a highly correlated setting. Results In this article, we propose a general algorithm, which improves the precision of any existing variable selection method. This algorithm is based on highly intensive simulations and takes into account the correlation structure of the data. Our algorithm can either produce a confidence index for variable selection or be used in an experimental design planning perspective. We demonstrate the performance of our algorithm on both simulated and real data. We then apply it in two different ways to improve biological network reverse-engineering. Availability and implementation Code is available as the SelectBoost package on the CRAN, https://cran.r-project.org/package=SelectBoost. Some network reverse-engineering functionalities are available in the Patterns CRAN package, https://cran.r-project.org/package=Patterns. Supplementary information Supplementary data are available at Bioinformatics online.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Jan Kalina ◽  
Anna Schlenker

The Minimum Redundancy Maximum Relevance (MRMR) approach to supervised variable selection represents a successful methodology for dimensionality reduction, which is suitable for high-dimensional data observed in two or more different groups. Various available versions of the MRMR approach have been designed to search for variables with the largest relevance for a classification task while controlling for redundancy of the selected set of variables. However, usual relevance and redundancy criteria have the disadvantages of being too sensitive to the presence of outlying measurements and/or being inefficient. We propose a novel approach called Minimum Regularized Redundancy Maximum Robust Relevance (MRRMRR), suitable for noisy high-dimensional data observed in two groups. It combines principles of regularization and robust statistics. Particularly, redundancy is measured by a new regularized version of the coefficient of multiple correlation and relevance is measured by a highly robust correlation coefficient based on the least weighted squares regression with data-adaptive weights. We compare various dimensionality reduction methods on three real data sets. To investigate the influence of noise or outliers on the data, we perform the computations also for data artificially contaminated by severe noise of various forms. The experimental results confirm the robustness of the method with respect to outliers.


2021 ◽  
Author(s):  
Kehinde Olobatuyi

Abstract Similar to many Machine Learning models, both accuracy and speed of the Cluster weighted models (CWMs) can be hampered by high-dimensional data, leading to previous works on a parsimonious technique to reduce the effect of ”Curse of dimensionality” on mixture models. In this work, we review the background study of the cluster weighted models (CWMs). We further show that parsimonious technique is not sufficient for mixture models to thrive in the presence of huge high-dimensional data. We discuss a heuristic for detecting the hidden components by choosing the initial values of location parameters using the default values in the ”FlexCWM” R package. We introduce a dimensionality reduction technique called T-distributed stochastic neighbor embedding (TSNE) to enhance the parsimonious CWMs in high-dimensional space. Originally, CWMs are suited for regression but for classification purposes, all multi-class variables are transformed logarithmically with some noise. The parameters of the model are obtained via expectation maximization algorithm. The effectiveness of the discussed technique is demonstrated using real data sets from different fields.


2020 ◽  
Vol 17 (2) ◽  
pp. 0550
Author(s):  
Ali Hameed Yousef ◽  
Omar Abdulmohsin Ali

         The issue of penalized regression model has received considerable critical attention to variable selection. It plays an essential role in dealing with high dimensional data. Arctangent denoted by the Atan penalty has been used in both estimation and variable selection as an efficient method recently. However, the Atan penalty is very sensitive to outliers in response to variables or heavy-tailed error distribution. While the least absolute deviation is a good method to get robustness in regression estimation. The specific objective of this research is to propose a robust Atan estimator from combining these two ideas at once. Simulation experiments and real data applications show that the proposed LAD-Atan estimator has superior performance compared with other estimators.  


2017 ◽  
Author(s):  
Sahir Rai Bhatnagar ◽  
Yi Yang ◽  
Budhachandra Khundrakpam ◽  
Alan C Evans ◽  
Mathieu Blanchette ◽  
...  

AbstractPredicting a phenotype and understanding which variables improve that prediction are two very challenging and overlapping problems in analysis of high-dimensional data such as those arising from genomic and brain imaging studies. It is often believed that the number of truly important predictors is small relative to the total number of variables, making computational approaches to variable selection and dimension reduction extremely important. To reduce dimensionality, commonly-used two-step methods first cluster the data in some way, and build models using cluster summaries to predict the phenotype.It is known that important exposure variables can alter correlation patterns between clusters of high-dimensional variables, i.e., alter network properties of the variables. However, it is not well understood whether such altered clustering is informative in prediction. Here, assuming there is a binary exposure with such network-altering effects, we explore whether use of exposure-dependent clustering relationships in dimension reduction can improve predictive modelling in a two-step framework. Hence, we propose a modelling framework called ECLUST to test this hypothesis, and evaluate its performance through extensive simulations.With ECLUST, we found improved prediction and variable selection performance compared to methods that do not consider the environment in the clustering step, or to methods that use the original data as features. We further illustrate this modelling framework through the analysis of three data sets from very different fields, each with high dimensional data, a binary exposure, and a phenotype of interest. Our method is available in the eclust CRAN package.


Sign in / Sign up

Export Citation Format

Share Document