The Performance of Microelectrolysis in Improving the Biodegradability Landfill Leachate

2013 ◽  
Vol 448-453 ◽  
pp. 1399-1402 ◽  
Author(s):  
Ling Zhao ◽  
Xiao Gu Cheng ◽  
Ping He Yin ◽  
Gang Lu ◽  
Jun Chang Suo

The aim of this study was to check the effectiveness of microelectrolysis for the pretreatment of a municipal landfill leachate with the objective improving its overall biodegradability, evaluated in terms of BOD5/COD ratio, up to a value compatible with biological treatment. The best microelectrolysis operational conditions for achieving the desired COD values were: pH=2.0; granular activated carbon (GAC) =10 g/L; mass ratio of zero iron (Fe0)/GAC=2:1; reaction time=90 min. The BOD5/COD was significantly improved from 0.12 to 0.31, which allowed an almost 85% removal of COD by a sequential activated sludge process. The results show that the microelectrolysis is a promising technology to improve the biodegradability of mature landfill leachate.

2020 ◽  
Vol 148 ◽  
pp. 01002
Author(s):  
Herto Dwi Ariesyady ◽  
Mentari Rizki Mayanda ◽  
Tsukasa Ito

Activated sludge process is one of the wastewater treatment method that is applied for many wastewater types including painting process wastewater of automotive industry. This wastewater is well-known to have high heavy metals concentration which could deteriorate water environment if appropriate performance of the wastewater treatment could not be achieved. In this study, we monitored microbial community diversity in a Painting Biological Treatment (PBT) system. We applied a combination of cultivation and genotypic biological methods based on 16S rRNA gene sequence analysis to identify the diversity of active microbial community. The results showed that active microbes that could grow in this activated sludge system were dominated by Gram-negative bacteria. Based on 16S rRNA gene sequencing analysis, it was revealed that their microbial diversity has close association with Bacterium strain E286, Isosphaera pallida, Lycinibacillus fusiformis, Microbacterium sp., Orchobactrum sp., Pseudomonas guariconensis, Pseudomonas sp. strain MR84, Pseudomonas sp. MC 54, Serpens sp., Stenotrophomonas acidaminiphila, and Xylella fastidiosa with similarity of 86 – 99%. This findings reflects that microbial community in a Painting Biological Treatment (PBT) system using activated sludge process could adapt with xenobiotics in the wastewater and has a wide range of diversity indicating a complex metabolism mechanism in the treatment process.


2018 ◽  
Vol 78 (3) ◽  
pp. 644-654 ◽  
Author(s):  
J. Olsson ◽  
S. Schwede ◽  
E. Nehrenheim ◽  
E. Thorin

Abstract A mix of microalgae and bacteria was cultivated on pre-sedimented municipal wastewater in a continuous operated microalgae-activated sludge process. The excess material from the process was co-digested with primary sludge in mesophilic and thermophilic conditions in semi-continuous mode (5 L digesters). Two reference digesters (5 L digesters) fed with waste-activated sludge (WAS) and primary sludge were operated in parallel. The methane yield was slightly reduced (≈10%) when the microalgal-bacterial substrate was used in place of the WAS in thermophilic conditions, but remained approximately similar in mesophilic conditions. The uptake of heavy metals was higher with the microalgal-bacterial substrate in comparison to the WAS, which resulted in higher levels of heavy metals in the digestates. The addition of microalgal-bacterial substrate enhanced the dewaterability in thermophilic conditions. Finally, excess heat can be recovered in both mesophilic and thermophilic conditions.


2021 ◽  
Vol 237 ◽  
pp. 88-96
Author(s):  
Fan Zeng ◽  
Keqiang Ding ◽  
Jiawei Lu ◽  
Minghan Luo ◽  
Danping Pan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document