Kinematics and Workspace Analysis of 3-RPP Parallel Mechanism

2013 ◽  
Vol 456 ◽  
pp. 146-150
Author(s):  
Zhi Jiang Xie ◽  
Jun Zhang ◽  
Xiao Bo Liu

This paper designed a kind of parallel mechanism with three degrees of freedom, the freedom and movement types of the robot are analyzed in detail, the parallel mechanisms Kinematics positive and inverse solutions are derived through using the vector method. And at last its workspace is analyzed and studied systematically.

2015 ◽  
Vol 20 (1) ◽  
pp. 5-18 ◽  
Author(s):  
J. Bałchanowski

Abstract This paper presents a method of numerical modelling of parallel mechanisms with clearances in their kinematic pairs taken into account. The pairs with clearances are modelled as shape connections based on constraints in the form of contact interactions. Using the created models simulations were run to determine the positioning errors of the links in a parallel mechanism with three degrees of freedom (MR2120). In particular, the accuracy of positioning the links close to the mechanism singular configurations was studied.


2011 ◽  
Vol 308-310 ◽  
pp. 2114-2119 ◽  
Author(s):  
Peng Lin Jing ◽  
Zhi You Feng

A new 4 DOF parallel mechanism with serial input limb is presented ——2UPS-RPU parallel mechanism, the limb with serial input is a less contrained active branched-chain,the number of its DOF is less than six,that is to say,the limbs not only transmitting driving force but also constraint force at the same time.Compared with traditional parallel mechanisms,the mechanism with serial input has greater number of DOF than the number of limbs and don’t lose the property of parallel mechanism. The inverse solutions to positions of the mechanism are modeled by inverse kinematic analysis in this paper, then the constraint conditions are established according to factors influencing the workspace of parallel mechanism,such as the limits of the hinge angle and the parallel link length.The workspace of 2UPS-RPU parallel mechanism can be obtained by using exetreme-boundary numerical algorithm in Matlab,the volume of workspace can be quantified by means of computation,and analyzing the impact of rod length ,circumradius of moving and fixed platform and motion pair rotation angle on the workspace.


Author(s):  
Ziming Chen ◽  
Wen-ao Cao ◽  
Huafeng Ding ◽  
Zhen Huang

Parallel mechanisms (PMs) with three degrees of freedom (DOFs) have been studied extensively, especially the PMs with two rotational and one translational DOFs (2R1T PMs). One major problem of the 2R1T PMs is the inherent parasitic motion. In this paper, a novel 2R1T symmetrical parallel mechanism with no parasitic motion is proposed and studied. The moving platform and the base of this mechanism are mirror symmetric with respect to a mid-plane. This moving platform can realize continuous rotation about any axis or any point on the mid-plane and can have continuous translation along the normal line of the mid-plane. The constraint and motion characteristics of this mechanism are analyzed. The kinematics solutions and the Jacobian matrix are derived. The singularities of this PM are discussed. In the end, several numerical examples are given to show the continuous rotations and continuous translations of this PM. This kind of PMs has outstanding advantages of easy path planning and controlling.


Author(s):  
ChiHyo Kim ◽  
KunWoo Park ◽  
TaeSung Kim ◽  
MinKi Lee

This paper designs a four legged parallel mechanism to improve the dexterity of three layered parallel walking robot. Topology design is conducted for a leg mechanism composed of four legs, base and ground, which constitute a redundant parallel mechanism. This mechanism is subdivided into four sub-mechanism composed of three legs. A motor vector is adopted to determine the 6×8 Jacobian of the redundant parallel mechanism and the 6×6 Jacobian of the sub-mechanisms, respectively. The condition number of the Jacobian matrix is used as an index to measure a dexterity. We analyze the condition numbers of the Jacobian over the positional and orientational walking space. The analytical results show that a sub-mechanism has lots of singularities within workspace but they are removed by a redundant parallel mechanism improving the dexterity. This paper presents a parallel typed walking robot to enlarge walking space and stability region. Seven types of three layered walking robots are designed by inserting an intermediate mechanism between the upper and the lower legged parallel mechanisms. They provide various types of gaits to walk rough terrain and climb over a wall with small degrees of freedom.


Author(s):  
J. A. Carretero ◽  
R. P. Podhorodeski ◽  
M. Nahon

Abstract This paper presents a study of the architecture optimization of a three-degree-of-freedom parallel mechanism intended for use as a telescope mirror focussing device. The construction of the mechanism is first described. Since the mechanism has only three degrees of freedom, constraint equations describing the inter-relationship between the six Cartesian coordinates are given. These constraints allow us to define the parasitic motions and, if incorporated into the kinematics model, a constrained Jacobian matrix can be obtained. This Jacobian matrix is then used to define a dexterity measure. The parasitic motions and dexterity are then used as objective functions for the optimizations routines and from which the optimal architectural design parameters are obtained.


Robotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 66
Author(s):  
Maurizio Ruggiu ◽  
Xianwen Kong

This paper deals with the reconfiguration analysis of a 3-DOF (degrees-of-freedom) parallel manipulator (PM) which belongs to the cylindrical parallel mechanisms family. The PM is composed of a base and a moving platform shaped as equilateral triangles connected by three serial kinematic chains (legs). Two legs are composed of two universal (U) joints connected by a prismatic (P) joint. The third leg is composed of a revolute (R) joint connected to the base, a prismatic joint and universal joint in sequence. A set of constraint equations of the 1-RPU−2-UPU PM is derived and solved in terms of the Euler parameter quaternion (a.k.a. Euler-Rodrigues quaternion) representing the orientation of the moving platform and of the Cartesian coordinates of the reference point on the moving platform. It is found that the PM may undergo either the 3-DOF PPR or the 3-DOF planar operation mode only when the base and the moving platform are identical. The transition configuration between the operation modes is also identified.


2010 ◽  
Vol 4 (4) ◽  
pp. 338-345 ◽  
Author(s):  
Jumpei Arata ◽  
◽  
Hideo Fujimoto

With haptic devices becoming increasingly common in both industrial field and consumer use, parallel mechanisms have been widely introduced for their high rigidity, output, accuracy and high backdrivability due to their multi-legged structure and fixed base actuators. In general parallel mechanism, redundancy enlarges the working area and avoids singularity. The redundant parallel mechanism we present introduces these advantages into haptic applications. Introducing this mechanism into a multiple degrees-of-freedom (DOF) structure realizes a wide range of working areas in rotation. The redundant parallel mechanism implemented in translational force display device, and multi-DOF force display device demonstrate the advantages of the redundant parallel mechanism in haptic applications. Following an overview, we introduce the prototype implementation and evaluation of these devices and discuss the effectiveness of the redundant parallel mechanism in haptic applications.


2001 ◽  
Vol 13 (5) ◽  
pp. 488-496 ◽  
Author(s):  
Noriaki Ando ◽  
◽  
Masahiro Ohta ◽  
Kohei Gonda ◽  
Hideki Hashimoto

This paper describes the research results on telemicromanipulation systems for microlevel tasks. Because of its better manipulation precision, stiffness and speed characteristics, the parallel mechanism micromanipulator was chosen to compose our systems. First, the kinematic analysis of our original manipulator mechanism is performed. Then, the structure of our parallel manipulator, control scheme, and experimental results are shown. Position accuracy and device control characteristics are analyzed and the feasibility of the use of parallel mechanisms for micromanipulator is then discussed. A parallel manipulator motion is restricted by 3 factors: mechanical limits of the passive joints, collision between links and actuators limitations. Results of the numerical workspace analysis considering the above factors are shown. We are proposing the use of dual manipulators for implementing improved real manipulation systems. The first kinematics and workspace analysis of dual systems using the VR simulator are also shown.


2011 ◽  
Vol 199-200 ◽  
pp. 1314-1319
Author(s):  
Cai An Fu ◽  
Jian Hao ◽  
Wen Chen

This paper proposes a novel parallel mechanism named 3/3-RRRS, and gives a research of direct and inverse solutions to positions of this mechanism. The equations of direct and inverse solutions are proposed by using vector method , and the analytical solutions of the inverse solution are given .There are many factors which influence the workspace, The article analyzes the specific factors that influence the workspace by using the software ADAMS, the workspace will function as a target for agencies to optimize the parameters.


2020 ◽  
Vol 12 (2) ◽  
Author(s):  
Huiping Shen ◽  
Damien Chablat ◽  
Boxiong Zeng ◽  
Ju Li ◽  
Guanglei Wu ◽  
...  

Abstract According to the topological design theory and the method of parallel mechanism (PM) based on position and orientation characteristic (POC) equations, this paper studied a three-degrees-of-freedom (3-DOF) translational PM that has three advantages, i.e., (i) it consists of three fixed actuated prismatic joints, (ii) the PM has analytic solutions to the direct and inverse kinematic problems, and (iii) the PM is of partial motion decoupling property. First, the main topological characteristics, such as the POC, degree-of-freedom, and coupling degree, were calculated for kinematic modeling. Thanks to these properties, the direct and inverse kinematic problems can be readily solved. Further, the conditions of the singular configurations of the PM were analyzed, which corresponds to its partial motion decoupling property.


Sign in / Sign up

Export Citation Format

Share Document