Research on Target Tracking Algorithm Based on Particle Filter and Mean-Shift
Since Mean-Shift tracking algorithm always falls into local extreme value when the target was sheltered and the particle filter tracking algorithm has huge calculation and degeneracy phenomenon, a new target tracking algorithm based on Mean-Shift and Particle Filter combination is proposed in this paper. First, this paper introduces the basic theory of Mean-Shift and Particle Filter tracking algorithm, and then presents the new target tracking which the Mean-Shift iteration embeds Particle Filter algorithm. Experiment results show that the algorithm needs less computation, while the real-time tracking has been guaranteed, robustness has been improved and the tracking results has been greatly increased.