Investigation of Whole Body Vibration on Urban Midi Bus

2014 ◽  
Vol 592-594 ◽  
pp. 2066-2070 ◽  
Author(s):  
M. Rao Jaganmohan ◽  
S.P. Sivapirakasham ◽  
K.R. Balasubramanian ◽  
K.T. Sreenath

The objective of the study is to measure the whole body vibration (WBV) transmitted to the driver as well as the passengers during the operation of bus and to compare results with ISO 2631-1(1997) comfort chart and health guidance criteria. In this study, vibration exposure of the driver, passenger in the mid row seat and passenger in the rear row seat were measured at different operating conditions (static and dynamic). The BMI (Body Mass Index) was maintained for driver and passengers. The results of static test showed that the driver seat produced more vibrations compared to the passenger's mid row and rear row seat. This is due to the fact that driver seat was positioned close to the engine cabin. The results of dynamic test showed that, in all cases, the rear seat produced maximum vibrations. At 40 km/h speed the vibration magnitude exceeded the exposure limit at all tested seats. This high vibration magnitude might be due to the resonance effect caused between engine and chassis vibrations.

1989 ◽  
Vol 33 (18) ◽  
pp. 1192-1196
Author(s):  
Ellen C. Haas

To date, testing and evaluation of whole-body vibration in ground vehicle systems have not always fully utilized appropriate experimental design methodology, applicable statistical tests, or relevant criteria. A test design and evaluation methodology was developed to eliminate these oversights. This methodology uses inferential statistics, questionnaires, and a comparison of vibration data with representative mission scenarios. The methodology was employed in the evaluation of two alternative tracked ground vehicle designs. The independent variables were track type, terrain, vehicle speed, and crew position. The dependent variables were International Standards Organization (ISO) 2631 whole-body vibration exposure limit times at the lateral, transverse, and vertical axes. Two different multivariate analyses of variance (MANOVAs) performed on the exposure limit data indicated that all main effects, as well as several interactions, were significant (p < .01). A comparison of exposure limits to a representative mission scenario indicated that both track types would exceed ISO 2631 exposure, comfort, and fatigue limits during expected travel over cross-country terrain. Crew questionnaires also indicated crew discomfort when exposed to this type of terrain. The experiment demonstrated that the procedure was useful in helping to determine the extent that vehicle vibration permits the performance of the vehicle mission, within limits dictated by safety, efficiency, and comfort.


2018 ◽  
Vol 217 ◽  
pp. 01005
Author(s):  
Ying Hao Ko ◽  
Chia Sin Geh

Studies have been carried on the effect of rocking on a baby and concluded that baby sleeps easier while being rocked. In Malaysia, as in many Southeast Asian Countries, it is common to put babies to sleep in a baby hammock. the vertical rocking motion generated by baby hammock has exposed babies to whole-body vibration (WBV). It has been shown by ISO2631 (1997) that WBV may lead the discomfort and adverse effect on health. Standards have been set by ISO 2631 (1997) concerning the WBV for people in a recumbent position and consider weighted vibrations of more than 2 m/s2 to be extremely uncomfortable. However, standards concerning the allowable amount vibrations a baby in a baby hammock can safety endure are currently lacking. WBV analysis of the baby hammock with the weight ranged from 3kg to 14kg is conducted. For each measurement, four conditions are considered: manual rocking, auto rocking with low, medium and high speed. In this study, average root-mean-square values for the acceleration were found to be at a maximum of 2.46 m/s2, and to be above the extremely uncomfortable level. This study develops a baseline exposure time for the baby hammock before it reaches the safety values of exposure action value (EAV) and exposure limit value (ELV) set by ISO 2631(1997).


2021 ◽  
Vol 8 (2) ◽  
pp. 149-154
Author(s):  
MAN MOHAN DEO ◽  
ADARSH KUMAR ◽  
INDRA MANI

Tractors play an important role in Indian agriculture; it is used for agricultural operations and as a common means of transportation in rural areas. It exposes the drivers and workers sitting on fenders to whole body vibration. which results into back pain, spine degeneration and even spine disc problems. Keeping this in mind a study was carried out to measure the whole body vibration on driver and fender seat with fully loaded double axle tractor-trailer under different operating conditions. Vibration was measured on two terrains (Asphalt, Farm), at three speed (10, 12, 14 km/h on asphalt terrain and 4, 5, 7 km/h on farm terrain, as per ISO-5008 (1979)), in three directions (longitudinal, transverse, and vertical) using tri-axial accelerometers. Data was taken for 120 s each and analyzed using vibration meter and analyzer for three replications of each treatments. Vector sum of vibration and Health Guidance Caution Zone upper and lower limit were obtained for different operating conditions to know the health effect of vibration.


2008 ◽  
Vol 310 (4-5) ◽  
pp. 1080-1092 ◽  
Author(s):  
Ivo J.H. Tiemessen ◽  
Carel T.J. Hulshof ◽  
Monique H.W. Frings-Dresen

2021 ◽  
pp. 107754632110358
Author(s):  
Kaviraj Ramar ◽  
LA Kumaraswamidhas

The operators of excavators often suffer from dreadful Whole-Body Vibration. Besides, the operators are subject to postural instability which is considered to be a serious occupational health hazard. The main objective of this study is to investigate the role of Lumbar Support Cushion in mitigation of Whole-Body Vibration and postural instability under three different operating conditions such as Front-Manipulator Motion, Swing Motion and Propel-Drive Motion. The obtained Vibration Dose Value reveals a significant difference between the operation cycle ( p < 0.001). Moreover, across the operation cycle with Lumbar Support Cushion a significant decrease in Vibration Dose Value (8) is observed on the operator seat-pan and backrest ( p < 0.05). Further, the effect of Whole-Body Vibration on physiological stress factors, a significant decrease in systolic blood pressure by 1.26%, pulse rate by 2.75% and Rate Pressure Product by 4%, is observed with the use of Lumbar Support Cushion ( p < 0.05) during the operation. The Lumbar Support Cushion helps in promoting a symmetric seating posture, and using Lumbar Support Cushion could help the excavator operator to increase in productivity during shift hour.


Author(s):  
Fouaz S. Ayachi ◽  
Jean-Marc Drouet ◽  
Yvan Champoux ◽  
Catherine Guastavino

Objectives: In this article, we seek to determine how sensitive road cyclists are to vertical vibration transmitted while riding a road bicycle and to propose metrics for the evaluation of dynamic comfort. Background: Road cyclists are exposed to random-type excitation due to road roughness. Vibration transmitted affects dynamic comfort. But how sensitive are cyclists to vibration level? What are the best metrics to measure the amount of vibration transmitted to cyclists? Previous studies used sinusoidal excitation with participants on rigid seats and measured acceleration. Methods: We use a psychophysical estimation of Just Noticeable Differences in Level (JNDL) for vertical vibration transmitted to cyclists on a road simulator. In Experiment 1, we estimate the JNDL for whole-body vibration using vertical excitation on both wheels simultaneously (20 male cyclists). In Experiment 2, we estimate the JNDL at two different points of contact by applying the same signal to only the hands or the buttocks (9 male cyclists). Results: The JNDLs are expressed in terms of acceleration and power transmitted to the cyclist. We compare the JNDLs expressed with these 2 metrics and measured at different points of contact. Conclusion: Using these two metrics and at all points of contact, vibration magnitude needs to be reduced by at least 15%, for the change to be detectable by road cyclists. Application: A road bicycle needs to transmit at least 15% less vibration for male cyclists to detect an improvement in dynamic comfort. Dynamic bicycle comfort can be measured in terms of a new metric: power transmitted to the cyclist.


Author(s):  
Alan G. Mayton ◽  
Christopher C. Jobes ◽  
Richard E. Miller

Exposure to whole-body vibration (WBV) and the postural requirements of the job have been identified as important risk factors in the development of musculoskeletal disorders of the back among workers exposed to a vibratory environment. This paper focuses on preliminary results of WBV data collected for two groups of haulage trucks — four older trucks from manufacturer A (MFR-A) and two newer trucks from manufacturer B (MFR-B). All of the trucks and their respective seats were considered to be in good working order during the study. Measurement periods for the truck groups had similarities, but varied from 2 to 58 minutes. Sampling times for the older trucks included a mean of 19.5 minutes and a standard deviation (STD) of 6.5 minutes compared to a mean of 40.8 minutes and a STD of 12.1 minutes for the newer trucks. Data collection coincided with the approximate delivery and first operation of the new trucks, and occurred approximately 12 months apart under similar weather and road conditions, and with the same drivers except an additional driver was included with the older trucks. Truck routes were somewhat different in that quarry production had changed location in the time between data collection activities. Overall, the results suggest that the newer trucks may provide better overall isolation to drivers/operators from WBV exposure compared to the older trucks operating at the quarry; although, this will need to be confirmed with additional measurements. Considering the higher variability and shorter sampling times for the older trucks, the results should be viewed with caution. For two of seven trials, the older trucks showed that seats amplified vibration, i.e., a transmissibility (T) &gt;1.0. Seat T for the older trucks ranged from 0.31 to 1.17 with a mean of 0.77 and STD of 0.32. This contrasted with the newer haulage trucks where seats amplified vibration in 3 of 8 trials. In this case, T did not vary greatly and ranged from 0.87 to 1.05 with a mean of 0.97 and STD of 0.07. Regarding older trucks, in five of seven trials, the seat (output) data of weighted root-mean square (RMS) acceleration (wRMSz) for the dominant z-axis exceeded the action level of 0.5 m/s2 action level recommended by the European Union Good Practice Guide for WBV (EUGPG) and levels exceeded the recommended exposure limit of 1.15 m/s2 in two of the seven trials. The wRMSz values for the older trucks varied from 0.41 to 1.83 m/s2 with a mean of 0.99 and STD of 0.57. Similarly, newer trucks indicated a narrower range of wRMSz from 0.38 to 0.95 m/s2. The mean wRMSz was lower for the newer trucks at 0.58 m/s2 with a STD of 0.23 m/s2. Similarly, newer trucks indicated wRMSz reached or exceeded the action level in four of eight trials. None of the trials with the new trucks showed wRMSz levels that reached or exceeded the recommended 1.15 m/s2 exposure limit. As an indicator of driver/operator discomfort, overall weighted total RMS acceleration (vector sum) values seem to show a “rougher” ride for the older trucks. The vector sum values for these trucks ranged widely from 0.70 to 2.59 m/s2 and, in four of seven trials, showed levels greater than 1.40 m/s2. The mean vector sum was 1.44 m/s2 with a STD of 0.75 m/s2. Comparatively, the newer trucks exhibited less variation with a range from 0.69 to 1.59 m/s2. The mean vector sum was 1.02 m/s2 with a STD of 0.35 m/s2. Vibration dose values for the dominant z-axis (VDVz), gave a sense of vehicle jarring/jolting conditions. All trials with the older trucks were within the recommended EUGPG action level of 9.1 m/s1.75. On the other hand, in three of eight trials, both newer trucks exceeded this action level with values of 9.18, 12.58, and 13.21 m/s1.75. Neither truck group showed VDVz that exceeded the exposure limit of 21 m/s1.75. A statistical analysis was not conducted, since the differences reported between truck groups may not be statistically significant owing to the relatively small sample size. Road conditions, changes in the truck routes, and driver/operator differences (e.g., stopping and turning) are possible factors in the higher VDV for the newer trucks.


Sign in / Sign up

Export Citation Format

Share Document