Mathematical Model of Four Wheeled Mobile Robot and its Experimental Verification

2014 ◽  
Vol 611 ◽  
pp. 130-136 ◽  
Author(s):  
Ľubica Miková ◽  
Michal Kelemen ◽  
Dušan Koniar

The paper deals with creation of a mathematical model of the mobile robot. For description of the kinematic variables such as position and velocity of each wheel a transformation matrix is used. The simulation model can be applied for calculation of assumed of the undercarriage centre of gravity and path of wheels. The function model was also used for experimental verification of the results of simulation experiments.

2017 ◽  
Vol 22 (1) ◽  
pp. 81-99 ◽  
Author(s):  
Z. Hendzel ◽  
Ł. Rykała

Abstract The work presents the dynamic equations of motion of a wheeled mobile robot with mecanum wheels derived with the use of Lagrange equations of the second kind. Mecanum wheels are a new type of wheels used in wheeled mobile robots and they consist of freely rotating rollers attached to the circumference of the wheels. In order to derive dynamic equations of motion of a wheeled mobile robot, the kinetic energy of the system is determined, as well as the generalised forces affecting the system. The resulting mathematical model of a wheeled mobile robot was generated with the use of Maple V software. The results of a solution of inverse and forward problems of dynamics of the discussed object are also published.


2014 ◽  
Vol 889-890 ◽  
pp. 998-1002
Author(s):  
Feng Ren ◽  
Xin Hui Liu ◽  
Jin Shi Chen ◽  
Ping Zeng ◽  
Bo Liang Liu

The main objective to study shift buffer impact of shifting process of construction machinery.introduces the working principle of main valve and wet multi-clutch,and developing a mathematical model and AMESim simulation model. analyzes the characteristics of pressure changes during the shift, buffering characteristics and impact on the performance characteristics, and experimental verification. The results showed that: the shift hydraulic system simulation model accurately credible; good performance of the system can effectively reduce shift jerk.


Author(s):  
Roman Chertovskih ◽  
Anna Daryina ◽  
Askhat Diveev ◽  
Dmitry Karamzin ◽  
Fernando L. Pereira ◽  
...  

2016 ◽  
Vol 9 (3) ◽  
pp. 215-221
Author(s):  
Junpeng Shao ◽  
Tianhua He ◽  
Jingang Jiang ◽  
Yongde Zhang

2021 ◽  
pp. 107754632199918
Author(s):  
Rongrong Yu ◽  
Shuhui Ding ◽  
Heqiang Tian ◽  
Ye-Hwa Chen

The dynamic modeling and trajectory tracking control of a mobile robot is handled by a hierarchical constraint approach in this study. When the wheeled mobile robot with complex generalized coordinates has structural constraints and motion constraints, the number of constraints is large and the properties of them are different. Therefore, it is difficult to get the dynamic model and trajectory tracking control force of the wheeled mobile robot at the same time. To solve the aforementioned problem, a creative hierarchical constraint approach based on the Udwadia–Kalaba theory is proposed. In this approach, constraints are classified into two levels, structural constraints are the first level and motion constraints are the second level. In the second level constraint, arbitrary initial conditions may cause the trajectory to diverge. Thus, we propose the asymptotic convergence criterion to deal with it. Then, the analytical dynamic equation and trajectory tracking control force of the wheeled mobile robot can be obtained simultaneously. To verify the effectiveness and accuracy of this methodology, a numerical simulation of a three-wheeled mobile robot is carried out.


Sign in / Sign up

Export Citation Format

Share Document