Finite Element Analysis on Fatigue of Train Axle

2011 ◽  
Vol 66-68 ◽  
pp. 1090-1093 ◽  
Author(s):  
Guang Xue Yang ◽  
Qiang Li ◽  
Ji Long Xie

In this paper, aimed at wheel-axle with axle load of 30 ton, the three dimensional finite element model was established, and the interference fit between wheel and axle was considered. According to Standard EN13103, the vertical load and the lateral load were determined, and then the stress distribution of axle was computed under two cases: only vertical load and both vertical and lateral load. The result shows that: the increase of axle load causes the increase of slip between axle and hub, which leads to an increase of fretting damage and a reduction in fatigue life. In addition, Dang Van criterion was employed to evaluate the fatigue of the whole axle. It is found that the transition zone next to wheel seat and the interface of hub and axle are dangerous points, which is in accordance with the practice.

2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


2011 ◽  
Vol 291-294 ◽  
pp. 3282-3286 ◽  
Author(s):  
Jiang Wei Wu ◽  
Peng Wang

In port crane industry, the surface hardening technique is widely used in order to improve the strength of wheel. But the hardening depth is chosen only by according to the experience, and the effect of different hardened depths is not studied theoretically. In this paper, the contact stresses in wheel with different hardening depth have been analyzed by applying three-dimensional finite element model. Based on this model, the ANSYS10.0 finite element software is used. The elastic wheel is used to verify the numerical results with the Hertz’s theory. Three different hardening depths, namely 10mm, 25mm and whole hardened wheel, under three different vertical loads were applied. The effect of hardening depth of a surface hardened wheel is discussed by comparing the contact stresses and contact areas from the numerical results.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhun Xu ◽  
Yikai Li ◽  
Shaoqun Zhang ◽  
Liqing Liao ◽  
Kai Wu ◽  
...  

Abstract Background Clinical studies have found that manipulations have a good clinical effect on sacroiliac joint (SIJ) pain without specific causes. However, the specific mechanisms underlying the effect of manipulations are still unclear. The purpose of this study was to investigate the effects of three common manipulations on the stresses and displacements of the normal SIJ and the strains of the surrounding ligaments. Methods A three-dimensional finite element model of the pelvis-femur was developed. The manipulations of hip and knee flexion (MHKF), oblique pulling (MOP), and lower limb hyperextension (MLLH) were simulated. The stresses and displacements of the SIJ and the strains of the surrounding ligaments were analyzed during the three manipulations. Results MOP produced the highest stress on the left SIJ, at 6.6 MPa, while MHKF produced the lowest stress on the right SIJ, at 1.5 MPa. The displacements of the SIJ were all less than 1 mm during the three manipulations. The three manipulations caused different degrees of ligament strain around the SIJ, and MOP produced the greatest straining of the ligaments. Conclusion The three manipulations all produced small displacements of the SIJ and different degrees of ligament strains, which might be the mechanism through which they relieve SIJ pain. MOP produced the largest displacement and the greatest ligament strains.


Author(s):  
Sunil Kumar Sharma ◽  
Jaesun Lee

Railways are very efficient mode of transportation. Speed limits of the railways and loads they carry are increasing rapidly. Due to some advantages, the insulated rail joints are still the part of a rail-track system. However, a high rate of failure of joints puts the railway track at risk. Therefore, a detailed study of these joints is required. In this paper, a three-dimensional finite element model of rail-fishplate joint is created using Abaqus - a finite element method-based software. Stresses in fishplate and bolts due to wheel impact are analysed by coupling implicit and explicit methods. It is found that bolts are a critical part of a joint due to stresses and vibrations to which they are subjected. The large number of stresses and vibration can result into loosening of bolts.


Author(s):  
Cagri Mollamahmutoglu ◽  
Idris Bedirhanoglu

In this study, the performance of a damaged dam was evaluated through a three-dimensional finite element model. The dam is located in Derbendikhan city of Northern Iraq and damaged during a 7.3 magnitude earthquake which was happened 30 kilometers south of Halabja city. Derbendikhan dam which was built between the years 1956-1961 is a clay-core rock fill dam. The damage of the dam was investigated at the site right after the earthquake and some cracks were observed in the main body of the dam. The main goal of this work is to present the results of the survey which was conducted at the site and investigating the damage development mechanism through a realistic three-dimensional finite element model of the dam. As complying with the observations at the site, the finite element analysis has shown that the primary failure mechanism is due to the separation of the core and rock fill sections at the downstream side of the dam.


2012 ◽  
Vol 446-449 ◽  
pp. 2206-2209
Author(s):  
Jin Long Wang

Three-dimensional finite element model of the mine escape capsule is established. With the different values of explosion shock waves, simulation analysis of the entry locker is performed by using ABAQUS. The simulation results indicate that the mine escape capsule is safe and available if the surge pressure of shock waves is less than 3.5Mpa.


Author(s):  
S. Ismonov ◽  
S. R. Daniewicz ◽  
J. C. Newman ◽  
M. R. Hill ◽  
M. R. Urban

A cold expansion process is used to prolong the fatigue life of a structure under cyclic loadings. The process produces a beneficial compressive residual stress zone in the hole vicinity, which retards the initiation and propagation of the crack at the hole edge. In this study, a three-dimensional finite element model of the split-sleeve cold expansion process was developed to predict the resulting residual stress field. A thin rectangular aluminum sheet with a centrally located hole was considered. A rigid mandrel and an elastic steel split sleeve were explicitly modeled with the appropriate contact elements at the interfaces between the mandrel, the sleeve, and the hole. Geometrical and material nonlinearities were included. The simulation results were compared with experimental measurements of the residual stress. The influence of friction and the prescribed boundary conditions for the sheet were studied. Differences between the split-sleeve- and the non-split-sleeve model solutions are discussed.


2010 ◽  
Vol 118-120 ◽  
pp. 147-150
Author(s):  
Da Zhao Yu ◽  
Yue Liang Chen ◽  
Yong Gao ◽  
Wen Lin Liu ◽  
Zhong Hu Jia

Three-dimensional finite element model of a cracked bolted joint has been developed in the non-linear finite element code MSC.Marc and attempts were made to validate it by comparing results with those of experiments and other finite element. Issues in modeling the contact between the joint parts, which affect the accuracy and efficiency of the model, were presented. Experimental measurements of load transfer were compared with results from finite element analysis. The results show that three-dimensional finite element model of cracked bolted joint can produce results in close agreement with experiment. Three-dimensional effects such as bolt titling, seconding and through-thickness variations in stress and strain are well represented by such models. Three-dimensional finite element analysis was also used to study the effects of hole mod and crack on the load transfer behaviour of single lap bolted joints. The results show that hole mode has big effect on load transfer of cracked bolted joint. In the whole progress of crack growth, the load transfer through bolt 1 decrease, and almost all of the load duduction of bolt 1 transfer into blot 2 rather than into bolt 3.


2020 ◽  
Author(s):  
Zhun Xu ◽  
Yikai Li ◽  
Shaoqun Zhang ◽  
Liqing Liao ◽  
Kai Wu ◽  
...  

Abstract BackgroundClinical studies have found that manipulations have a good clinical effect on sacroiliac joint (SIJ) pain without specific causes. However, the specific mechanisms underlying the effect of manipulations are still unclear. The purpose of this study was to investigate the effects of three common manipulations on the stresses and displacements of the SIJ and the strains of the surrounding ligaments.MethodsA three-dimensional finite element model of the pelvis-femur was developed. The manipulations of hip and knee flexion (MHKF), oblique pulling (MOP), and lower limb hyperextension (MLLH) were simulated. The stresses and displacements of the SIJ and the strains of the surrounding ligaments were analyzed during the three manipulations.ResultsMOP produced the highest stress on the left SIJ, at 6.6 MPa, while MHKF produced the lowest stress on the right SIJ, at 1.5 MPa. The displacements of the SIJ were all less than 1 mm during the three manipulations. The three manipulations caused different degrees of ligament strain around the SIJ, and MOP produced the greatest straining of the ligaments.ConclusionThe three manipulations all produced small displacements of the SIJ and different degrees of ligament strains, which might be the mechanism through which they relieve SIJ pain. MOP may be the most effective of these manual therapies.


2020 ◽  
Author(s):  
Zhun Xu ◽  
Yikai Li ◽  
Shaoqun Zhang ◽  
Liqing Liao ◽  
Kai Wu ◽  
...  

Abstract Background: Clinical studies have found that manipulations have a good clinical effect on sacroiliac joint (SIJ) pain without specific causes. However, the specific mechanisms of manipulations are still unclear. The purpose of this study was to investigate the effects of three common manipulations on the pressures and displacements of SIJ, and the strains of the surrounding ligaments. Methods: A three-dimensional finite element model of the pelvis-femur was developed. The manipulation of hip and knee flexion (MHKF), the manipulation of oblique pulling (MOP), and the manipulation of lower limb hyperextension (MLLH) were simulated. The pressures and displacements of SIJs, and the strains of the surrounding ligaments were analyzed under the three manipulations. Results: The MOP produced the greatest pressure on the left SIJ, at 6.6 MPa, while the MHKF could produce the lowest pressure on the right SIJ, at 1.5 MPa. The displacements of SIJs were all less than 1mm in the three manipulations. The three manipulations could cause different degrees of the strains of ligaments around the SIJs, and the MOP could produce the largest strain of ligaments. Conclusion: The three manipulations all produced small displacements of SIJs, while they caused different degrees of ligament strains, which might be the reason for relieving the SIJ pain. The MOP may be a more effective manual therapy. Key words: Manipulation, Sacroiliac joint, Displacement, Ligament strain, Finite element analysis.


Sign in / Sign up

Export Citation Format

Share Document