Vibration of Initially Stressed Functionally Graded Material Plates and Shells

2014 ◽  
Vol 684 ◽  
pp. 158-164 ◽  
Author(s):  
Sugirtha Singh J. Monslin ◽  
Thangaratnam R. Kari

Finite element formulation using semiloof shell element for initially stressed vibration of Functionally Graded Material (FGM) plates and shells are presented. The influence of volume fraction index on the vibration frequencies of thin functionally graded plates and shells and variation of temperature on frequency are studied. New results are presented for initially stressed vibration of FGM plates and shells.

2016 ◽  
Vol 28 (2) ◽  
pp. 272-289 ◽  
Author(s):  
Mohammadreza Saviz

A layer-wise finite element approach is adopted to analyse the hollow cylindrical shell made of functionally graded material with piezoelectric rings as sensor/actuator, under dynamic load. The mechanical properties of the substrate are regulated by volume fraction as a function of radial coordinate. The thickness of functionally graded material shell and piezo-rings is divided into mathematical sub-layers and then the general layer-wise laminate theory is formulated through introducing piecewise continuous approximations across the thickness, accounting for any discontinuity in derivatives of the displacement at the interface between the ring and cylinder. The virtual work statement including structural and electrical potential energies yields the three-dimensional governing equations which are reduced to two-dimensional differential equations, using layer-wise method. For axisymmetric case, the resulted equations are solved with one-dimensional finite element method in the axial direction. By assembling stiffness and mass matrices, the required stress and displacement continuities at each interface and between the two adjacent elements are forced. The results for free vibration and static loading are applied to study the convergence and verified by comparing them to solutions of similar existing problems. The induced deformation by piezoelectric actuators as well as the effect of rings on functionally graded material shell is investigated.


2013 ◽  
Vol 05 (04) ◽  
pp. 1350041 ◽  
Author(s):  
M.N.A. GULSHAN TAJ ◽  
ANUPAM CHAKRABARTI

In the present study, an attempt has been made to present the Co finite element formulation based on third order shear deformation theory for buckling analysis of functionally graded material skew plate under thermo-mechanical environment. Here, prime emphasis has been given to study the influence of skew angle on the buckling behavior of functionally graded plate. Two dissimilar homogenization schemes, namely Mori–Tanaka scheme and Voigt rule of mixture are employed to sketch their influence for the interpretation of data. Temperature-dependent material properties of the constituents of the plate are considered to perform thermal analysis. Numerical examples are solved using different mixture of ceramic and metal plates to generate the new results and relative imperative conclusions are highlighted. The roles played by the different factors like loading condition, volume fraction index, skew angle, boundary condition, aspect ratio, thickness ratio and homogenization schemes on buckling behavior of the FGM skew plates are presented in the form of tables and figures.


Author(s):  
Miguel Gutierrez Rivera ◽  
J. N. Reddy

AbstractIn this paper the thermo-mechanical response of functionally graded plates and shells is studied using a continuum shell finite element model with high-order spectral/hp basis functions. The shell element is based on the seven-parameter first-order shear deformation theory, and it does not utilize reduced integration or stabilization ideas and yet exhibits no locking. The static and dynamic response of functionally graded shells, with power-law variation of the constituents, under mechanical and thermal loads is investigated by varying the volume fraction of the constituents. Numerical results for deflections and stresses are presented and compared with available analytical and finite element results from the literature. The performance of the shell element for transient thermal problems is found to be excellent.


2017 ◽  
Vol 21 (4) ◽  
pp. 1557-1577 ◽  
Author(s):  
Shince V Joseph ◽  
SC Mohanty

This article deals with the buckling and free vibration analysis of a sandwich plate with viscoelastic core and functionally graded material constraining lamina under high temperature environment. The first-order shear deformation theory is used for the finite element formulation of the plate. Along with the shear deformation, the longitudinal and transverse deformation of the core is also taken into account. The rise in the external temperature is found to reduce the critical buckling loads and fundamental frequencies, and to increase the corresponding modal loss factors. Various parametric studies such as effect of aspect ratio, core thickness ratio and volume fraction index on static and dynamic behaviour of the sandwich plate are also examined.


2014 ◽  
Vol 984-985 ◽  
pp. 402-409 ◽  
Author(s):  
Monslin Sugirtha Singh ◽  
Kari Thangaratnam

— Finite element formulation for Functionally Graded Material (FGM) square plates subjected to Thermal loads are presented. The plate is assumed to be having linear temperature rise through the thickness. The power law distribution model is assumed for the composition of the FGM material along the thickness. A software program “COMSAP” has been developed using Semiloof shell element formulation and validation checks are carried out using the results available in the related literature. Results for thermal stress and thermal buckling analysis of functionally graded plates are reported.


2018 ◽  
Vol 877 ◽  
pp. 372-377
Author(s):  
Kari Thangaratnam ◽  
Evangeline Kumar

In this research article, semiloof shell element was used to study the behaviour of plate and shells under mechanical and thermal load for stress, free vibration, initially stressed vibration, mechanical buckling, and non-linear vibration. In the above cases, the material properties: Isotropic, Composite and Functionally Graded Material (FGM) were considered. Wherein, the material property for the FGM shells was assumed to vary through the thickness of the shell by varying the volume fraction of the constituent, whereas, for composites, classical laminated theory was used. Utilizing the semiloof shell element, and the above material properties, the package COMSAP was developed. From the obtained results, we have observed that with coarse meshes, semiloof shell elements present better results, and it is especially effective in the case of thin plates and shells.


Sign in / Sign up

Export Citation Format

Share Document