Analysis of Hydroelectric Unit’s Upper Bracket Based on Test and FEM

2014 ◽  
Vol 721 ◽  
pp. 131-134
Author(s):  
Mi Mi Xia ◽  
Yong Gang Li

To research the load upper bracket of Francis hydroelectric unit, then established the finite-element model, and analyzed the structure stress of 7 operating condition points with the ANSYS software. By the strain rosette test, acquired the data of stress-strain in the area of stress concentration of the upper bracket. The inaccuracy was considered below 5% by analyzing the contradistinction between the finite-element analysis and the test, and match the engineering precision and the test was reliable. The finite-element method could be used to judge the stress of the upper bracket, and it could provide reference for the Structural optimization and improvement too.

2014 ◽  
Vol 697 ◽  
pp. 173-176
Author(s):  
Hao Zou ◽  
Ming Zhang ◽  
Jia Jun Ren

In this paper, authors made contrast with the three finite element methods in analysis accuracy and usability .Those are all based on the structural analysis of mining excavator arm. The first fem is using UG solid modeling capabilities to create model .The finite element model is generated by UG_ANSYS, including setting the loads of material properties and boundary conditions ,also loading work. The process is called preprocessing completely .Then export a“. inp” file,after that, imported that file directly into ANSYS software for solving. The second one is to import solid mode created in UG into ANSYS software directly ,then take pretreatment and solution accordingly.The last one is using UG modeling and UG NX NASTRAN (the finite element analysis function) for structure analysis. It is concluded that using UG completely pretreatment of ANSYS analysis method and UG NX NASTRAN method feel more convenient to operate it with the high analyze accuracy,with the two methods , designers can modify mining mechanical arm weak positions more easily.In turns,they can improve the designing level of physical prototyping.


Author(s):  
J. Poirier ◽  
P. Radziszewski

The natural frequencies of circular saws limit the operating speeds of the saws. Current industry methods of increasing natural frequency include pretensioning, where plastic deformation is induced into the saw. To better model the saw, the finite element model is compared to current software for steel saws; C-SAW, a software program that calculates frequencies for stiffened circular saws. Using C-SAW and the finite element method the results are compared and the finite element method is validated for steel saws.


2012 ◽  
Vol 569 ◽  
pp. 415-419
Author(s):  
Xi Jian Zheng ◽  
Yong Shang Han ◽  
Zheng Yi Xie

Based on the Finite Element Method, the suspended platform of temporarily installed suspended access equipment was simplified and the special connection positions were dealt with rigidization and coupling, thus the finite element model of suspended platform was established. Analyzing major structures of finite element model in different section dimensions, the reasonable scheme could be ascertained and the section dimensions of major structures in different materials could be obtained. Combining with the test results, the rationality of finite element analysis could be proved. The study could provide reference for the similar products on design and development.


2010 ◽  
Vol 102-104 ◽  
pp. 17-21
Author(s):  
Bin Zhao

In order to study the static and dynamical characteristics of the crankshaft, ANSYS software was used to carry out the corresponding calculations. The entity model of the crankshaft was established by UG software firstly, and then was imported into ANSYS software for meshing, and then the finite element model of the crankshaft was constructed. The crankshaft satisfied the requirement of stiffness and strength through static analysis. The top six natural frequencies and corresponding shapes were acquired through modal analysis, and the every order critical rotating speed of the crankshaft was calculated. The fatigue life of the crank was calculated by fatigue module of ANSYS software finally. These results offered the theoretical guidance for designing, manufacturing and repairing the crankshaft.


2014 ◽  
Vol 1061-1062 ◽  
pp. 421-426 ◽  
Author(s):  
Panupich Kheunkhieo ◽  
Kiatfa Tangchaichit

The purposes of this research are to explore the baseplate and actuator arm deformation which effect to the gram load which occur in the ball swaging process, the main component determining quality of assembly the head stack assembly with the actuator arm. By shooting a ball though the base plate, the component located on the head stack assembly, the base plate plastic deformation takes place and it in expand in radial direction. The base plate then adjoins with the actuator arm. Using the finite element method to reproduce the ball swaging process, we repeated to study effect of the swage press clamp and velocity. The study done by creating the three dimensionals finite element model to analyze and explain characteristics of the baseplate and actuator arm deformation which effect to gram load which effect to the ball swaging process.


2018 ◽  
Vol 777 ◽  
pp. 416-420
Author(s):  
Juthanee Phromjan ◽  
Chakrit Suvanjumrat

The natural rubber compound of each layer of solid tire had determined the mechanical properties in tension. It was found that the stress-strain relation of each material tire layer was fitted very well with the Ogden constitutive model. The R2 which was 0.986, 0.996 and 0.985 represented the certain curve fitting on the internal, middle and tread layer of solid tire, respectively. Subsequently, the Ogden model was implemented in the finite element model of the rubber specimen and solid tire. The finite element analysis results obtained an average error of 18.00% and 14.63% for the specimen and solid tire model by comparing to the physical experiment, respectively. Particularly, the mechanical properties of the natural compounds could be used to predict the ultimate compression load for the solid tire failure.


2011 ◽  
Vol 117-119 ◽  
pp. 1535-1542 ◽  
Author(s):  
Hua Wei Zhang ◽  
Wei Xia ◽  
Zhi Heng Wu

In this paper, the clamping unit of a two-platen injection molding machine was modeled by Pro/ENGINEER, and was imported to Altair HyperWorks. In HyperMesh module, the finite element model was set up, ANSYS has been used in the finite element analysis of the clamping unit and the deformation and stress results were obtained. Based on the topology optimization of HyperWorks/OptiStruct, recommendations to improve the structure of the clamping mechanism are presented; the results showed that less material was used while its performance was maintained.


2012 ◽  
Vol 468-471 ◽  
pp. 2413-2416 ◽  
Author(s):  
Chuang Du ◽  
Yan Yan Li ◽  
Rong Guo ◽  
Shi Bin Ma

In order to study the performance of asphalt pavement with function layer under temperature-load coupling action, the thickness of surface layer, the module of surface layer and was analyzed to abtain their influence on the function layer stress using the finite element method. The results clearly indicated that it is very effective to prevent the reflection crack by increasing the thickness of asphalt surface layer and it is not obvious to reduce the reflection crack through enhancing the module of asphalt surface layer.


1999 ◽  
Vol 122 (1) ◽  
pp. 42-46 ◽  
Author(s):  
Hubert J. M. Geijselaers ◽  
Annette J. E. Koning

The equations that describe the development of corrugations on block braked wheel treads caused by thermoelastic instability are discretized using the finite element method. The perturbations of temperatures and distortions are described by an amplitude function, which is spatially fixed multiplied by a sinusoidal running wave term of fixed wavelength. The governing equations are such that the wave term cancels out. Only the amplitude functions are discretized in the finite element model. The intermittent nature of the contact is directly specified through the boundary conditions. Results are obtained for a simplified two-dimensional model of a train wheel. These results agree with analytical results. [S0742-4787(00)00701-3]


2012 ◽  
Vol 590 ◽  
pp. 487-491
Author(s):  
Qin Man Fan

The frame is the main part of the force matrix of truck vehicle and the stress state is complex and difficult to design. The finite element method is more accurate for the analysis of the static and dynamic characteristics of the frame, which provide guidance for the frame structure design. Establish finite element model of the frame with the application of ANSYS. According to the mechanical analysis of the model, impose reasonable constraints and load, the most typical of the four conditions in the frame is calculated with the finite element analysis, and predicted the weak parts of the frame according to the frame stress-strain cloud, which provided a very important theoretical basis for the improvement of the frame structure of the frame and optimizing design of the frame.


Sign in / Sign up

Export Citation Format

Share Document