Researching on Characteristics of Rayleigh Waves

2014 ◽  
Vol 721 ◽  
pp. 472-475
Author(s):  
Xu Fang Zhu ◽  
Bing Yan

Rayleigh wave is a secondary wave characterized by low frequency and strong energy, propagating mainly along the interface of medium and rapid attenuation of energy with increase in interface distance. The same as reflected wave and refracted wave, Rayleigh wave also contain subsurface geological information. In this paper, the concept of the Rayleigh wave, wave equation, dispersion equation, the frequency bulk characteristics and the application of the actual data are used to indicate the characteristics of Rayleigh wave and its application.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shishir Gupta ◽  
Rishi Dwivedi ◽  
Smita Smita ◽  
Rachaita Dutta

Purpose The purpose of study to this article is to analyze the Rayleigh wave propagation in an isotropic dry sandy thermoelastic half-space. Various wave characteristics, i.e wave velocity, penetration depth and temperature have been derived and represented graphically. The generalized secular equation and classical dispersion equation of Rayleigh wave is obtained in a compact form. Design/methodology/approach The present article deals with the propagation of Rayleigh surface wave in a homogeneous, dry sandy thermoelastic half-space. The dispersion equation for the proposed model is derived in closed form and computed analytically. The velocity of Rayleigh surface wave is discussed through graphs. Phase velocity and penetration depth of generated quasi P, quasi SH wave, and thermal mode wave is computed mathematically and analyzed graphically. To illustrate the analytical developments, some particular cases are deliberated, which agrees with the classical equation of Rayleigh waves. Findings The dispersion equation of Rayleigh waves in the presence of thermal conductivity for a dry sandy thermoelastic medium has been derived. The dry sandiness parameter plays an effective role in thermoelastic media, especially with respect to the reference temperature for η = 0.6,0.8,1. The significant difference in η changes a lot in thermal parameters that are obvious from graphs. The penetration depth and phase velocity for generated quasi-wave is deduced due to the propagation of Rayleigh wave. The generalized secular equation and classical dispersion equation of Rayleigh wave is obtained in a compact form. Originality/value Rayleigh surface wave propagation in dry sandy thermoelastic medium has not been attempted so far. In the present investigation, the propagation of Rayleigh waves in dry sandy thermoelastic half-space has been considered. This study will find its applications in the design of surface acoustic wave devices, earthquake engineering structural mechanics and damages in the characterization of materials.


2019 ◽  
Vol 219 (2) ◽  
pp. 975-994 ◽  
Author(s):  
Gabriel Gribler ◽  
T Dylan Mikesell

SUMMARY Estimating shear wave velocity with depth from Rayleigh-wave dispersion data is limited by the accuracy of fundamental and higher mode identification and characterization. In many cases, the fundamental mode signal propagates exclusively in retrograde motion, while higher modes propagate in prograde motion. It has previously been shown that differences in particle motion can be identified with multicomponent recordings and used to separate prograde from retrograde signals. Here we explore the domain of existence of prograde motion of the fundamental mode, arising from a combination of two conditions: (1) a shallow, high-impedance contrast and (2) a high Poisson ratio material. We present solutions to isolate fundamental and higher mode signals using multicomponent recordings. Previously, a time-domain polarity mute was used with limited success due to the overlap in the time domain of fundamental and higher mode signals at low frequencies. We present several new approaches to overcome this low-frequency obstacle, all of which utilize the different particle motions of retrograde and prograde signals. First, the Hilbert transform is used to phase shift one component by 90° prior to summation or subtraction of the other component. This enhances either retrograde or prograde motion and can increase the mode amplitude. Secondly, we present a new time–frequency domain polarity mute to separate retrograde and prograde signals. We demonstrate these methods with synthetic and field data to highlight the improvements to dispersion images and the resulting dispersion curve extraction.


2018 ◽  
Vol 12 (03) ◽  
pp. 1850007 ◽  
Author(s):  
J. P. Narayan ◽  
A. Kumar

The effects of ridge and valley on the characteristics of Rayleigh waves are presented in this paper. The research work carried out has been stimulated by the day by day increase of long-span structures in the hilly areas which are largely affected by the spatial variability in ground motion caused by the high-frequency Rayleigh waves. The Rayleigh wave responses of the considered triangular and elliptical ridge and valley models were computed using a fourth-order accurate staggered-grid viscoelastic P-SV wave finite-difference (FD) program. The simulated results revealed very large amplification of the horizontal component and de-amplification of the vertical component of Rayleigh wave at the top of a triangular ridge and de-amplification of both the components at the base of the triangular valley. The observed amplification of both the components of Rayleigh wave in front of elliptical valley was larger than triangular valley models. A splitting of the Rayleigh wave wavelet was inferred after interaction with ridge and valley. It is concluded that the large-scale topography acts as a natural insulator for the surface waves and the insulating capacity of the valley is more than that of a ridge. This insulation phenomenon is arising due to the reflection, diffraction and splitting of the surface wave while moving across the topography. It is concluded that insulating potential of the topography for the Rayleigh waves largely depends on their shape and shape-ratio.


1989 ◽  
Vol 79 (4) ◽  
pp. 1177-1193
Author(s):  
Jacques Talandier ◽  
Emile A. Okal

Abstract We have developed a new magnitude scale, Mm, based on the measurement of mantle Rayleigh-wave energy in the 50 to 300 sec period range, and directly related to the seismic moment through Mm = log10M0 − 20. Measurements are taken on the first passage of Rayleigh waves, recorded on-scale on broadband instruments with adequate dynamical range. This allows estimation of the moment of an event within minutes of the arrival of the Rayleigh wave, and with a standard deviation of ±0.2 magnitude units. In turn, the knowledge of the seismic moment allows computation of an estimate of the high-seas amplitude of a range of expectable tsunami heights. The latter, combined with complementary data from T-wave duration and historical references, have been integrated into an automated procedure of tsunami warning by the Centre Polynésien de Prévention des Tsunamis (CPPT), in Papeete, Tahiti.


1982 ◽  
Vol 72 (4) ◽  
pp. 1329-1349
Author(s):  
H. J. Patton

abstract Single-station measurements of Rayleigh-wave phase velocity are obtained for paths between the Nevada Test Site and the Livermore broadband regional stations. Nuclear underground explosions detonated in Yucca Valley were the sources of the Rayleigh waves. The source phase φs required by the single-station method is calculated for an explosion source by assuming a spherically symmetric point source with step-function time dependence. The phase velocities are used to analyze the Rayleigh waves of the Massachusetts Mountain earthquake of 5 August 1971. Measured values of source phase for this earthquake are consistent with the focal mechanism determined from P-wave first-motion data (Fischer et al., 1972). A moment-tensor inversion of the Rayleigh-wave spectra for a 3-km-deep source gives a horizontal, least-compressive stress axis oriented N63°W and a seismic moment of 5.5 × 1022 dyne-cm. The general agreement between the results of the P-wave study of Fischer et al. (1972) and this study supports the measurements of phase velocities and, in turn, the explosion source model used to calculate φs.


1966 ◽  
Vol 56 (4) ◽  
pp. 925-936 ◽  
Author(s):  
I. N. Gupta

abstract The reciprocity theorem is used to obtain Rayleigh wave radiation patterns from sources on the surface of or within an elastic semi-infinite medium. Nine elementary line sources first considered are: horizontal and vertical forces, horizontal and vertical double forces without moment, horizontal and vertical single couples, center of dilatation (two dimensional case), center of rotation, and double couple without moment. The results are extended to the three dimensional case of similar point sources in a homogeneous half space. Haskell's results for the radiation patterns of Rayleigh waves from a fault of arbitrary dip and direction of motion are reproduced in a much simpler manner. Numerical results on the effect of the depth of these sources on the Rayleigh wave amplitudes are shown for a solid having Poisson's ratio of 0.25.


Sign in / Sign up

Export Citation Format

Share Document