A Study on Dry Sliding Wear Behaviour of Hybrid Metal Matrix Composites at Room Temperature

2015 ◽  
Vol 766-767 ◽  
pp. 219-228 ◽  
Author(s):  
N.G. Siddeshkumar ◽  
G.S. Shiva Shankar ◽  
S. Basavarajappa

An attempt has been made to study the dry sliding wear behaviour of Aluminium based hybrid composites in room temperature.Al 2219 is used as base material with B4C and MoS2 as reinforcements. The hybrid composite were prepared by conventional stir casting technique. The dry sliding wear test were carried out for various parameters like sliding distance, applied load and sliding speed. The Optical Microscope and SEM results showed the presence of B4C and MoS2, which are fairly uniform and randomly dispersed on matrix material.XRD analysis, shown the presence of B4C and MoS2 phases in the prepared composites.The incorporation of reinforcement particles B4C and MoS2 reduces the specific wear rate of composites. The addition of MoS2 as a secondary reinforcement has significant effect on reducing specific wear rate of prepared composites. By using SEM worn surface of hybrid composites were studied.

2015 ◽  
Vol 90 ◽  
pp. 148-156 ◽  
Author(s):  
O. Carvalho ◽  
M. Buciumeanu ◽  
S. Madeira ◽  
D. Soares ◽  
F.S. Silva ◽  
...  

2018 ◽  
Vol 7 (3.17) ◽  
pp. 38 ◽  
Author(s):  
M A. Abdelgnei ◽  
M Z. Omar ◽  
M J. Ghazali ◽  
Mohamed A. Gebril ◽  
M N. Mohammed

In this study, the effect of improved microstructure of Al-5.7Si-2Cu-0.3Mg alloys by using semisolid process on hardness and dry sliding wear behaviour were investigated. The microstructures of conventional cast alloy were totally dendritic, while in rheocasting the dendritic transfer to fine globular microstructures after using cooling slope casting. Tribological tests were carried out by using a pin-on-disc apparatus in dry sliding conditions. Wear tests were at low sliding speed 1ms-1 ,applied load at 50N and three different sliding distance (i.e., 1.8Km, 5.4Km and 9Km) respectively. An optical microscope and a scanning electron microscope were used to examine the microstructure and to understand the wear mechanism on the worn surface of both samples. The results showed that, the wear resistance of rheocast alloy was improved and higher than that those produce by conventional casting. The volume loss of rheocast alloy show reduction more than 18% at 1.8Km and 10% at 9Km compared to as-cast alloy. Moderate wear regimes were appeared in both alloys, according to the range of wear rate. The friction coefficient had increased due to increase in the contact point between pin and disc materials. The dominant wear mechanism for conventional and rheocasting alloys was adhesion wear and abrasive wear respectively.  


2014 ◽  
Vol 97 ◽  
pp. 694-702 ◽  
Author(s):  
K. Umanath ◽  
S.T. Selvamani ◽  
K. Palanikumar ◽  
R. Sabarikreeshwaran

Sign in / Sign up

Export Citation Format

Share Document