Development of Magnesium Matrix Syntactic Foams Processed through Powder Metallurgy Techniques

2015 ◽  
Vol 766-767 ◽  
pp. 281-286 ◽  
Author(s):  
G. Anbuchezhiyan ◽  
B. Mohan ◽  
R.V. Karthikeyan

The presence of Hollow particles instead of gas porosity provides a closed cell structure called Syntactic foams. Syntactic foams have gained significant attention in recent years due to their low density, moisture absorption and thermal expansion coefficient compared to other cellular materials, such as open and closed cell structured foams. In terms of mechanical behavior, it is generally more insightful to compare metal matrix syntactic foams with metal foams and metal matrix composites. In comparison with metal foams, they have high compressive yield strength and more homogenous mechanical properties but usually higher densities and lower plasticity. In comparison with metal matrix composites, they have lower strength but offer compressibility, which is not existence in metal matrix composites. Syntactic foams have been extensively studied for aluminum based metal matricesand polymer matrices. Importance in magnesium foams is increasing in recent periods due to their very low density. Only a few studies are available on magnesium matrix syntactic foams processed through powder metallurgy techniques. This review presents an overview of hollow particle filled magnesium matrix (AZ91D/microballons) syntactic foams using powder metallurgy methods.

2022 ◽  
pp. 103411
Author(s):  
Alessandro Sergi ◽  
Raja H.U. Khan ◽  
Sandeep Irukuvarghula ◽  
Martina Meisnar ◽  
Advenit Makaya ◽  
...  

2020 ◽  
Vol 321 ◽  
pp. 11028
Author(s):  
S.V. Prikhodko ◽  
O.M. Ivasishin ◽  
P.E. Markovsky ◽  
D.G. Savvakin ◽  
O.O. Stasiuk

Due to the high specific strength of Ti, materials on its base are indispensable when high-strength and low-weight requests are a chief demand from the industry. Reinforcement of Ti-alloys with hard and light particles of TiC and TiB is a credible pathway to make metal matrix composites (MMC) with enhanced elastic moduli without compromising the material’s low-weight. However, reinforcement of the alloy with hard particles inevitably lowers the value of toughness and plasticity of material. Yet, in many applications simultaneous high hardness and high plasticity are not required through the entire structure. For instance, parts that need enhanced wear resistance or resistance upon ballistic impact demand high hardness and strength at the surface, whereas their core necessitates rather high toughness and ductility. Such combination of mechanical properties can be achieved on layered structures joining two and more layers of different materials with different chemical composition and/or microstructure within each individual layer. Multi-layered structures of Ti-6Al-4V alloy and its metal-matrix composites (MMC) with 5 and10% (vol.) of TiC and TiB were fabricated in this study using blended elemental powder metallurgy (BEPM) of hydrogenated Ti. Post-sintering hot deformation and annealing were sometimes also employed to improve the microstructure and properties. Structure of materials were characterized using light optical microscopy, scanning electron microscopy, electron backscattered diffraction, x-ray microscopy, tensile and 3-point flexural tests. The effect of various fabrication parameters was investigated to achieve desirable microstructure and properties of layered materials. Using optimized processing parameters, relatively large multilayered plates were made via BEPM and demonstrate superior anti-ballistic performance compared to the equally sized uniform Ti-6Al-4V plates fabricated by traditional ingot and wrought technology.


2018 ◽  
Vol 70 (6) ◽  
pp. 1066-1071 ◽  
Author(s):  
Saravanan C. ◽  
Subramanian K. ◽  
Anandakrishnan V. ◽  
Sathish S.

Purpose Aluminium is the most preferred material in engineering structural components because of its excellent properties. Furthermore, the properties of aluminium may be enhanced through metal matrix composites and an in-depth investigation on the evolved properties is needed in view of metallurgical, mechanical and tribological aspects. The purpose of this study is to explore the effect of TiC addition on the tribological behavior of aluminium composites. Design/methodology/approach Aluminium metal matrix composites at different weight percentage of titanium carbide were produced through powder metallurgy. Produced composites were subjected to sliding wear test under dry condition through Taguchi’s L9 orthogonal design. Findings Optimal process condition to achieve the minimum wear rate was identified though the main effect plot. Sliding velocity was identified as the most dominating factor in the wear resistance. Practical implications The production of components with improved properties is promoted efficiently and economically by synthesizing the composite via powder metallurgy. Originality/value Though the investigations on the wear behavior of aluminium composites are analyzed, reinforcement types and the mode of fabrication have their significance in the metallurgical and mechanical properties. Thus, the produced component needs an in-detail study on the property evolution.


Sign in / Sign up

Export Citation Format

Share Document