End of Life and Beginning of Life Thermal Analysis of a Micro Satellite

2015 ◽  
Vol 798 ◽  
pp. 551-555
Author(s):  
Mustafa Turkmenoglu

Satellites with passive thermal control system use thermal coatings, secondary and first surface mirrors and paints to maintain the temperatures of their electronic equipment within operating temperatures. Satellite coatings are exposed to harsh space environments like ultraviolet radiation (UV) and atomic oxygen (AO) that cause thermal degradation. As nature of the space environment, degradation of the surface paints and coatings cause increase in temperatures of the equipment in time. Thermal designer must consider the thermal degradation of the coatings and paints and optimize the radiator sizes of the satellite at Beginning of Life (BOL) and End of Life (EOL) of the satellite in order to maintain the temperatures of equipment within their safe operation limits. For this analysis, a micro-class satellite using passive thermal control with surface paints and interface conductance within each equipment has been studied. The satellite top surface (+Z) faces the earth and bottom surface (-Z) faces deep space. The lateral sides of the satellite are covered with honeycomb solar panels and top and bottom surfaces are covered with white paint which act as satellite radiator. The satellite orbit has been considered as 700 km Sun-Synchronous Low Earth Orbit. In this analysis BOL and EOL thermo optical properties have been used to predict the satellite temperatures before and after degradation of paints. Thermal analysis have been performed and predicted temperatures obtained by using THERMICA thermal analysis software.

1966 ◽  
Vol 39 (4) ◽  
pp. 1247-1257 ◽  
Author(s):  
Clyde L. Whipple ◽  
John A. Thorne

Abstract Elastomeric silicones are among the best materials available for many ablative and space applications. In ablative applications, these materials protect launching equipment, safeguard various parts of vehicles and spacecraft during flight, and shield re-entering spacecraft. Generally, elastomeric silicones are used where ablative conditions involve low to moderate heat fluxes and shear forces. Ablative characteristics of materials can vary widely depending on polymer type, fillers, and applications techniques, and no one elastomeric silicone will perform in a wide range of ablative missions. A good knowledge of the ablative characteristics of silicone materials is required to select the best candidates for a given application. In the space environment, silicones are often used for seals, thermal control coatings, potting materials, and other applications because they perform well over wide temperature ranges, and because they are inherently stable to high-vacuum and ultraviolet conditions. Data given in this paper illustrate that silicones show little weight loss or loss of properties on exposure to space environmental extremes. Furthermore, these losses can be made almost negligible by proper conditioning of the finished elastomer.


Biosensors ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 38
Author(s):  
Ada Kanapskyte ◽  
Elizabeth M. Hawkins ◽  
Lauren C. Liddell ◽  
Shilpa R. Bhardwaj ◽  
Diana Gentry ◽  
...  

In light of future missions beyond low Earth orbit (LEO) and the potential establishment of bases on the Moon and Mars, the effects of the deep space environment on biology need to be examined in order to develop protective countermeasures. Although many biological experiments have been performed in space since the 1960s, most have occurred in LEO and for only short periods of time. These LEO missions have studied many biological phenomena in a variety of model organisms, and have utilized a broad range of technologies. However, given the constraints of the deep space environment, upcoming deep space biological missions will be largely limited to microbial organisms and plant seeds using miniaturized technologies. Small satellites such as CubeSats are capable of querying relevant space environments using novel, miniaturized instruments and biosensors. CubeSats also provide a low-cost alternative to larger, more complex missions, and require minimal crew support, if any. Several have been deployed in LEO, but the next iterations of biological CubeSats will travel beyond LEO. They will utilize biosensors that can better elucidate the effects of the space environment on biology, allowing humanity to return safely to deep space, venturing farther than ever before.


Proceedings ◽  
2020 ◽  
Vol 60 (1) ◽  
pp. 28 ◽  
Author(s):  
Elizabeth M. Hawkins ◽  
Ada Kanapskyte ◽  
Sergio R. Santa Maria

In light of an upcoming series of missions beyond low Earth orbit (LEO) through NASA’s Artemis program and the potential establishment of bases on the Moon and Mars, the effects of the deep space environment on biology need to be examined and protective countermeasures need to be developed. Even though many biological experiments have been performed in space since the 1960s, most of them have occurred in LEO and for only short periods of time. These LEO missions have studied many biological phenomena in a variety of model organisms, as well as utilized a broad range of technologies. Given the constraints of the deep space environment, however, future deep space biological missions will be limited to microbial organisms using miniaturized technologies. Small satellites like CubeSats are capable of querying relevant space environments using novel instruments and biosensors. CubeSats also provide a low-cost alternative to more complex and larger missions, and require minimal crew support, if any. Several have been deployed in LEO, but the next iteration of biological CubeSats will go farther. BioSentinel will be the first interplanetary CubeSat and the first biological study NASA has sent beyond Earth’s magnetosphere in 50 years. BioSentinel is an autonomous free-flyer platform able to support biology and to investigate the effects of radiation on a model organism in interplanetary deep space. The BioSensor payload contained within the free-flyer is also an adaptable instrument that can perform biologically relevant measurements with different microorganisms and in multiple space environments, including the ISS, lunar gateway, and on the surface of the Moon. Nanosatellites like BioSentinel can be used to study the effects of both reduced gravity and space radiation and can house different organisms or biosensors to answer specific scientific questions. Utilizing these biosensors will allow us to better understand the effects of the space environment on biology so humanity may return safely to deep space and venture farther than ever before.


2019 ◽  
Vol 91 (7) ◽  
pp. 1039-1050 ◽  
Author(s):  
Syahrim Azhan Ibrahim ◽  
Eiki Yamaguchi

Purpose This study aims to predict the types of thermally induced dynamics (TID) that can occur on deployable solar panels of a small form factor satellite, CubeSat which flies in low Earth orbit (LEO). The TID effect on the CubeSat body is examined. Design/methodology/approach A 3U CubeSat with four short-edge deployable solar panels is considered. Time historic temperature of the solar panels throughout the orbit is obtained using a thermal analysis software. The results are used in numerical simulation to find the structural response of the solar panel. Subsequently, the effect of solar panel motion on pointing the direction of the satellite is examined using inertia relief method. Findings The thermal snap motion could occur during eclipse transitions due to rapid temperature changes in solar panels’ cross-sections. In the case of asymmetric solar panel configuration, noticeable displacement in the pointing direction can be observed during the eclipse transitions. Research limitations/implications This work only examines an LEO mission where the solar cells of the solar panels point to the Sun throughout the daylight period and point to the Earth while in shadow. Simplification is made to the CubeSat structure and some parameters in the space environment. Practical implications The results from this work reveal several practical applications worthy of simplifying the study of TID on satellite appendages. Originality/value This work presents a computational method that fully uses finite element software to analyze TID phenomenon that can occur in LEO on a CubeSat which has commonly used deployable solar panels structure.


2019 ◽  
Vol 17 (2) ◽  
pp. 157
Author(s):  
Poki Agung Budiantoro ◽  
Ahmad Fauzi

LAPAN SAR-Microsatellite is the first LAPAN micro satellite being developed and planned to carry a Synthetic Aperture Radar (SAR) payload.  Different from optical satellites that have been developed, LAPAN SAR-Microsatellite requires a lot more power. Solar array panels are needed to generate solar radiation into electrical energy which is used by all of subsystem satellite as energy to turn on and turn off all of components. More larger the area of solar array panel, more greater to the energy obtanied. Therefore, the needed of deployable solar array panel is a must caused by the dimension of the main body structur (MBS) are not large enough. Solar cells will experience a decrease in efficiency if they experience excessive heat. If there is a decrease in efficiency in the solar cell, it will have an impact on the decrease in power produced. The purpose of this study is to conduct thermal design on solar panels to maintain temperature according to their working temperature. Calculations are carried out on the temperature of solar array panel with various optical properties in the upper and lower panel that best which will be use using one nodal analysis methode According to the calculation result from all of the designs passive thermal control system on this study show that Design-5 is the best thermal control design which can be used for LAPAN SAR-microsatellite deployable solar array panel which α=0.24 at the top and ε=0.9 at the bottom surface of solar array panel.


2004 ◽  
Vol 851 ◽  
Author(s):  
Jacob I. Kleiman

ABSTRACTMany organic-based materials exposed to low Earth orbit (LEO) environment undergo dramatic changes and irreversible degradation of physical characteristics. While many protective schemes are used to reduce the effects of LEO environment, protection of such materials in LEO still remains a major challenge, especially for future long duration missions or space stations.In addition to the traditional protective coating approaches, surface modification processes were proposed and successfully used as an approach to protect polymers, thermal control paints and other components and structures from LEO environment. Among them two surface modification processes, the Photosil™ and the Implantox™ that used new approaches in silicon functionalization, as in the Photosil™, and a modified ion implantation process, as in the Implantox™ allowed to incorporate up to 36 at.% of Si into the upper surface layer regions of the treated polymers, composite materials, thermal control paints and other high-performance organic materials.The tests conducted in plasma and fast atomic oxygen (FAO) beam facilities at comparable to LEO fluencies (∼ (1–2)·1020 at.O/cm2 ) demonstrated erosion yields lower than −10−26 cm3at, unchanged thermal optical properties, where important, and excellent thermal match between the treated layers and the bulk of the treated materials. After FAO testing, the Implantox™ treated samples were clear and transparent, with a glassy-like shiny surface with no signs of any surface erosion.


2000 ◽  
Vol 12 (1) ◽  
pp. 113-123 ◽  
Author(s):  
Peter Schuler ◽  
H Bob Mojazza ◽  
Ross Haghighat

A series of advanced polymer films from Triton Systems is being developed to meet the challenges of harsh space environmental effects, lighter weight requirements and superior thermal control performance demands. With support from NASA, Triton Systems Inc has developed advanced new materials for thermal control films with exceptional properties and durability in the space environment. These films known as TOR™ and TOR-LM™ are amber coloured, mechanically sound, produced in continuous rolls and have undergone substantial ground-based simulation and confirming space validation tests. These films are highly resistant to atomic oxygen erosion, and have excellent vacuum ultraviolet radiation stability in ground-based simulation tests. Two applications for these films include large inflatable structures that are either deployed in low earth orbit (LEO) or travel through a LEO orbit into higher orbits, and as outer metallized layers in multi-layer insulation (MLI) blankets. This paper discusses the processing of these advanced materials into thin films, metallization of the films and characterization of their environmental durability as well as other physical, optical, thermal and mechanical properties.


2004 ◽  
Vol 851 ◽  
Author(s):  
Christopher O. A. Semprimoschnig ◽  
Stan Heltzel ◽  
Marc van Eesbeek

ABSTRACTIn this paper the ESA internal approach regarding the assessment of materials for inner solar system missions is presented. A main part of the work is devoted to the assessment of thermal control materials and space environmental testing at elevated temperature. As these materials are the most exposed it is important to understand how they will interact with the relevant space environment at elevated temperature. Driving parameters for materials degradation are discussed and on-going testing efforts are described. An important input parameter for thermal models is the knowledge of the end of life values for the thermo-optical properties as these determine the equilibrium temperatures. In certain cases end of life testing needs to be done when the uncertainty of extrapolation is too high.


2000 ◽  
Vol 12 (1) ◽  
pp. 43-52 ◽  
Author(s):  
John W Connell

Thin films of phenylphosphine oxide-containing polymers were exposed to low Earth orbit aboard a space shuttle flight (STS-85) as part of flight experiment designated Evaluation of Space Environment and Effects on Materials (ESEM). This flight experiment was a cooperative effort between the NASA Langley Research Center (LaRC) and the National Space Development Agency of Japan (NASDA). The thin-film samples described herein were part of an atomic oxygen exposure (AOE) experiment and were exposed to primarily atomic oxygen (∼1×1019 atoms cm−2). The thin-film samples consisted of three phosphine oxide-containing polymers (arylene ether, benzimidazole and imide). Based on post-flight analyses using atomic force microscopy, x-ray photo-electron spectroscopy and weight loss data, it was found that the exposure of these materials to atomic oxygen (AO) produces a phosphorus oxide layer on the surface of the samples. Earlier work has shown that this layer provides a barrier towards further attack by AO. Consequently, these materials do not exhibit linear erosion rates which is in contrast with most organic polymers. Qualitatively, the results obtained from these analyses compare favourably with those obtained from samples exposed to AO and/or an oxygen plasma in ground-based exposure experiments. The results of the low Earth orbit AO exposure on these materials will be compared with those of ground-based exposure to AO.


Sign in / Sign up

Export Citation Format

Share Document