Prediction of Spur Gear Mesh Stiffness Associated with the Tooth Corrosion

2015 ◽  
Vol 799-800 ◽  
pp. 570-575
Author(s):  
Zheng Min Qing Li ◽  
Qing Bin Zhao ◽  
Xiao Zhen Li

In this study, a mesh stiffness model of spur gear drives considering the tooth corrosion effect, which is based on Ishikawa model, is proposed. The fidelity of mesh stiffness based on the proposed model is checked by comparing the result with a benchmark result from the reference and the effect of the tooth corrosion on mesh stiffness is analyzed. The prediction indicates mesh stiffness is insensitive to the tooth corrosion, but this conclusion has a signification for assessing the stability of inherent properties of a spur gear drive when the tooth corrosion is produced.

2018 ◽  
Vol 19 (3) ◽  
pp. 306 ◽  
Author(s):  
Yong Yang ◽  
Jiaxu Wang ◽  
Qinghua Zhou ◽  
Yanyan Huang ◽  
Jinxuan Zhu ◽  
...  

Some tooth profile geometric features, such as root fillet area, flank modification and wear are of nonnegligible importance for gear mesh stiffness. However, due to complexity of analytical description, their influence on mesh stiffness was always ignored by existing research works. The present work derives analytical formulations for time-varying gear mesh stiffness by using parametric equations of flank profile. Tooth geometry formulas based upon a rack-type tool are derived following Litvin's vector approach. The root fillet area and tooth profile deviations can therefore be fully considered for spur gear tooth stiffness evaluation. The influence of gear fillet determined by tip fillet radius of the rack-type tool is quantified parametrically. The proposed model is validated to be effective by comparing with a finite element model. Further, the model is applied to investigate the stiffness variations produced by tooth addendum modification, tooth profile nonuniform wear and modification.


2016 ◽  
Vol 24 (8) ◽  
pp. 1518-1534 ◽  
Author(s):  
Alişan Yüceşan ◽  
Semih Sezer

In this paper, the influence of clutch disk pre-damper mechanism constituents on the idle rattle phenomenon was investigated with an analytical model containing a new time-varying gear mesh stiffness function. Comparing experimental results to simulation results for the same excitation input was the key implementation for the validation of proposed model. The engine speed fluctuations represented in the simulation was imported from a speed measurement of a diesel engine in the test bench.


Author(s):  
M H Arafa ◽  
M M Megahed

This paper presents a finite element (FE) modelling technique to evaluate the mesh compliance of spur gears. Contact between the engaging teeth is simulated through the use of gap elements. Analysis is performed on several gear combinations and the variation in tooth compliance along the contact location is presented in a non-dimensional form. Results are compared with earlier predictions based on analytical, numerical and experimental methods. Load sharing among the mating gear teeth is discussed, and the overall gear mesh stiffness together with its cyclic variation along the path of contact is evaluated.


2018 ◽  
Vol 101 ◽  
pp. 424-434 ◽  
Author(s):  
Xihui Liang ◽  
Hongsheng Zhang ◽  
Ming J. Zuo ◽  
Yong Qin

2013 ◽  
Vol 284-287 ◽  
pp. 461-467
Author(s):  
Ying Chung Chen ◽  
Chung Hao Kang ◽  
Siu Tong Choi

The dynamic analysis of a geared rotor-bearing system with time-varying gear mesh stiffness and pressure angle is presented in this paper. Although there are analyses for both of the gear and rotor-bearing system dynamics, the coupling effect of the time-varying mesh and geared rotor-bearing system is deficient. Therefore, the pressure angle and contact ratio of the geared rotor-bearing system are treated as time-varying variables in the proposed model while they were considered as constant in previous models. The gear mesh stiffness is varied with different contact ratios of the gear pair in the meshing process. The nonlinear equations of motion for the geared rotor-bearing system are obtained by applying Lagrange’s equation and the dynamic responses are computed by using the Runge-Kutta numerical method. Numerical results of this study indicated that the proposed model provides realistic dynamic response of a geared rotor-bearing system.


Sign in / Sign up

Export Citation Format

Share Document