Relation between Uniaxial Compressive Strength and Physical Parameters of Rock in a Nuclear Power Plant

2017 ◽  
Vol 865 ◽  
pp. 373-382
Author(s):  
Jing Sen Liu ◽  
Hai Bo Li ◽  
Bo Liu ◽  
Guo Kai Zhang ◽  
Wei Zhou

In order to improve the accuracy of the selection on rock mechanical parameters, the relation between uniaxial compressive strength (UCS) and physical mechanical parameters should be investigated. A great number of physical and mechanical tests on rock in the first-stage of Guangxi Fangchenggang Nuclear Power Plant (GFNPP) are conducted. Mineral identification tests of rocks are conducted, and rocks are divided into two groups (A and B) according to the result of the test. The correlation coefficient between rock UCS and rock physical parameters (porosity, density and P-wave velocity) are calculated by using Pearson’s analytical method. The result shows that the relationship between physical parameters and mechanical parameters of rock is influenced significantly by content of quartz. Regression analysis method is used to explore the relation between UCS and porosity, density, P-wave velocity of rock; combined with the dimensional analysis, the relation between UCS and rock physical parameters was established. Based on normality test and randomness test, the best fitting equation is determined as the empirical equation of UCS. The empirical equation was used to forecast the UCS of rock in the second-stage of GFNPP, comparative results show that the forecasting value and the experimental value are in good agreement.

2021 ◽  
Vol 11 (22) ◽  
pp. 10653
Author(s):  
Jingwei Gao ◽  
Chao Xu ◽  
Yan Xi ◽  
Lifeng Fan

This study investigated the effects of freezing temperature under freeze-thaw cycling conditions on the mechanical behavior of sandstone. First, the sandstone specimens were subjected to 10-time freeze-thaw cycling treatments at different freezing temperatures (−20, −40, −50, and −60 °C). Subsequently, a series of density, ultrasonic wave, and static and dynamic mechanical behavior tests were carried out. Finally, the effects of freezing temperature on the density, P-wave velocity, stress–strain curves, static and dynamic uniaxial compressive strength, static elastic modulus, and dynamic energy absorption of sandstone were discussed. The results show that the density slightly decreases as temperature decreases, approximately by 1.0% at −60 °C compared with that at 20 °C. The P-wave velocity, static and dynamic uniaxial compressive strength, static elastic modulus, and dynamic energy absorption obviously decrease. As freezing temperature decreases from 20 to −60 °C, the static uniaxial compressive strength, static elastic modulus, dynamic strength, and dynamic energy absorption of sandstone decrease by 16.8%, 21.2%, 30.8%, and 30.7%, respectively. The dynamic mechanical behavior is more sensitive to the freezing temperature during freeze-thawing cycling compared with the static mechanical behavior. In addition, a higher strain rate can induce a higher dynamic strength and energy absorption.


2012 ◽  
Vol 512-515 ◽  
pp. 2908-2913 ◽  
Author(s):  
Yu Cheng Kan ◽  
Hsuan Chih Yang ◽  
Kuang Chih Pei

This paper presents an experimental study dealing with the toughness of heavy concrete based on the ASTM C1018. Mixtures including 0%, 0.5%, 1.0% and 1.5% of steel fiber content by volume are designated, which are developed based on a mixture used in Kuosheng nuclear power plant in Taiwan. Metallic aggregates of iron shots and iron ore take 48.8% by volume in that mixture. Test results reveal that the compressive strength and rupture modulus of heavy concrete turn out higher than those of normal concrete. In addition, flexural toughness of heavy concrete grow with the steel fiber fraction, which is valid and appropriate for construction of shielding structure and spent fuel cask.


2017 ◽  
Vol 865 ◽  
pp. 366-372
Author(s):  
Jing Sen Liu ◽  
Hai Bo Li ◽  
Guo Kai Zhang ◽  
Jian Deng

In order to improve the accuracy of the rock mechanical parameters, the correlations among physical and mechanical parameters were investigated. A large number of laboratory testing results curried out on 408 rock specimens including metamorphic rocks, sedimentary rocks and igneous rocks. Through the statistical analysis of the laboratory test data, several regression equations among rock material parameters were established. The research suggests that, in addition to Poisson's ratio, the mechanical parameters (unconfined compressive strength (UCS), elastic Young’s modulus, shear modulus) relate well to physical parameters (porosity, P-wave velocity), and the relationships are mainly described by power and exponential correlations which have good squared regression coefficients. The correlation between elastic Young’s modulus and dynamic elastic modulus was established, as well as the relationship between shear modulus and dynamic shear modulus.


2021 ◽  
Vol 74 (4) ◽  
pp. 521-528
Author(s):  
André Cezar Zingano ◽  
Paulo Salvadoretti ◽  
Rafael Ubirajara Rocha ◽  
João Felipe Coimbra Leite Costa

Sign in / Sign up

Export Citation Format

Share Document