Study on Spin Transport Properties in Transition Metal Atoms Interfered Alpha-Graphyene Nanoribbon Systems

2014 ◽  
Vol 1015 ◽  
pp. 389-392
Author(s):  
Y.H. Zhou ◽  
L.L. Zhou ◽  
X.H. Qiu ◽  
Y.L. Peng

The transport properties of transition metal atoms interfered alpha-graphyne nanoribbon systems are investigated by first-principles calculations combined with the Keldysh nonequilibrium Green’s method. In all, five types of configurations are considered. We find that intervention of three Cr atom in alpha-graphyne nanoribbon systems decreases the conductivity of the system. Further study show that the magnetic direction of the electrode infulence the spin filtering effect greatly, while the ralative magnetic direction of the three transition Cr atoms have little effect on the transport properties. At finite bias window, negative differential resistance happens. Proper analysis are given to explain the spin filtering phenonmenon and the different transport properties via transmission coefficient and projected density of states.

Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2339 ◽  
Author(s):  
Xiuwen Zhao ◽  
Bin Qiu ◽  
Guichao Hu ◽  
Weiwei Yue ◽  
Junfeng Ren ◽  
...  

The electronic structure and spin polarization properties of pentagonal structure PdSe2 doped with transition metal atoms are studied through first- principles calculations. The theoretical investigations show that the band gap of the PdSe2 monolayer decreases after introducing Cr, Mn, Fe and Co dopants. The projected densities of states show that p-d orbital couplings between the transition metal atoms and PdSe2 generate new spin nondegenerate states near the Fermi level which make the system spin polarized. The calculated magnetic moments, spin density distributions and charge transfer of the systems suggest that the spin polarization in Cr-doped PdSe2 will be the biggest. Our work shows that the properties of PdSe2 can be modified by doping transition metal atoms, which provides opportunity for the applications of PdSe2 in electronics and spintronics.


2017 ◽  
Vol 19 (44) ◽  
pp. 30069-30077 ◽  
Author(s):  
Shu-Long Li ◽  
Hui Yin ◽  
Xiang Kan ◽  
Li-Yong Gan ◽  
Udo Schwingenschlögl ◽  
...  

We use first-principles calculations to systematically explore the potential of transition metal atoms (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au) embedded in buckled monolayer g-C3N4 as single-atom catalysts.


2018 ◽  
Vol 20 (32) ◽  
pp. 21105-21112 ◽  
Author(s):  
Si-Cong Zhu ◽  
Shun-Jin Peng ◽  
Kai-Ming Wu ◽  
Cho-Tung Yip ◽  
Kai-Lun Yao ◽  
...  

We investigate the electronic and transport properties of vanadium-doped zigzag blue phosphorus nanoribbons by first-principles quantum transport calculations.


2018 ◽  
Vol 20 (25) ◽  
pp. 17387-17392 ◽  
Author(s):  
Yanbing Wu ◽  
Zongyu Huang ◽  
Huating Liu ◽  
Chaoyu He ◽  
Lin Xue ◽  
...  

We have studied the stable geometries, band structures and magnetic properties of transition-metal (V, Cr, Mn, Fe, Co and Ni) atoms absorbed on MoS2/h-BN heterostructure systems by first-principles calculations.


Sign in / Sign up

Export Citation Format

Share Document