Removal of Ion Irradiation-Induced Affected Layers from Diamond Cutting Tools to Improve Machining Performance

2014 ◽  
Vol 1017 ◽  
pp. 479-484
Author(s):  
Noritaka Kawasegi ◽  
Kazuma Ozaki ◽  
Noboru Morita ◽  
Kazuhito Nishimura ◽  
Hideki Sasaoka

A focused ion beam (FIB) is an effective means of fabricating micro-to submicro-scale shapes on diamond cutting tools. However, ion irradiation of diamond tools causes ion implantation, defects, and non-diamond phases, all of which degrade the tool performance. To remove affected layers from FIB-irradiated diamond tools, heat treatment in air was applied, and the effect of the heating parameters on the etchability of the irradiated area was investigated. It was found that the affected layer could be etched and removed from the diamond tool surface, even at 500 °C. In machining experiments on aluminum alloy and nickel phosphorus, machining performance was improved by the applied heating technique, and the cutting forces and machined surfaces were similar to those obtained with the non-irradiated tool. These results indicate that the proposed heating technique is effective for diamond cutting tools shaped by FIB.

2017 ◽  
Vol 47 ◽  
pp. 311-320 ◽  
Author(s):  
Noritaka Kawasegi ◽  
Kazuma Ozaki ◽  
Noboru Morita ◽  
Kazuhito Nishimura ◽  
Makoto Yamaguchi

Author(s):  
Jiachun Wang ◽  
Huarui Chi ◽  
Maoqiang Lv ◽  
Xiaoxuan Liu ◽  
Yuntao Li ◽  
...  

The flank faces of diamond cutting tools are characterized by the groove wear when the tools are used to machine single crystal silicon workpieces precisely, which significantly affects the quality of the machined surface. Many researchers confirmed the existence of SiC hard particles and inferred that hard particles scratch led to the groove wear on tools flank face. However, little literature can be found to reveal the formation process of tools groove wear. Therefore, in this paper, a scratch model of SiC hard particles and diamond tool is proposed by molecular dynamics simulation method to investigate the formation mechanism of the groove wear on the tools flank face. The two basic scratch conditions, namely mechanical scratch and rolling scratch, are utilized to simulate hard particles motion on diamond tools surface respectively, and the tools wear are suggested by the variation in coordination numbers. It can be concluded that owing to the high temperature, the locally softened performance of diamond tools combined with continuous effects of SiC hard particles are the main factors that lead to the formation of the groove wear on the tools flank face.


2014 ◽  
Vol 38 (1) ◽  
pp. 174-182 ◽  
Author(s):  
Noritaka Kawasegi ◽  
Tomoyuki Niwata ◽  
Noboru Morita ◽  
Kazuhito Nishimura ◽  
Hideki Sasaoka

2014 ◽  
Vol 2014.10 (0) ◽  
pp. 83-84
Author(s):  
Noritaka KAWASEGI ◽  
Kazuma OZAKI ◽  
Noboru MORITA ◽  
Hideki SASAOKA ◽  
Kazuhito NISHIMUR ◽  
...  

JOM ◽  
2021 ◽  
Author(s):  
Alexander J. Leide ◽  
Richard I. Todd ◽  
David E. J. Armstrong

AbstractSilicon carbide is desirable for many nuclear applications, making it necessary to understand how it deforms after irradiation. Ion implantation combined with nanoindentation is commonly used to measure radiation-induced changes to mechanical properties; hardness and modulus can be calculated from load–displacement curves, and fracture toughness can be estimated from surface crack lengths. Further insight into indentation deformation and fracture is required to understand the observed changes to mechanical properties caused by irradiation. This paper investigates indentation deformation using high-resolution electron backscatter diffraction (HR-EBSD) and Raman spectroscopy. Significant differences exist after irradiation: fracture is suppressed by swelling-induced compressive residual stresses, and the plastically deformed region extends further from the indentation. During focused ion beam cross-sectioning, indentation cracks grow, and residual stresses are modified. The results clarify the mechanisms responsible for the modification of apparent hardness and apparent indentation toughness values caused by the compressive residual stresses in ion-implanted specimens.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2268
Author(s):  
Hongying Sun ◽  
Penghui Lei ◽  
Guang Ran ◽  
Hui Wang ◽  
Jiyun Zheng ◽  
...  

As leading candidates of sheet steels for advanced nuclear reactors, three types of Ni–Mo–Cr high-strength low alloy (HSLA) steels named as CNST1, CNST2 and CNSS3 were irradiated by 400 keV Fe+ with peak fluence to 1.4 × 1014, 3.5 × 1014 and 7.0 × 1014 ions/cm2, respectively. The distribution and morphology of the defects induced by the sample preparation method and Fe+ irradiation dose were investigated by transmission electron microscopy (TEM) and positron-annihilation spectroscopy (PAS). TEM samples were prepared with two methods, i.e., a focused ion beam (FIB) technique and the electroplating and twin-jet electropolishing (ETE) method. Point defects and dislocation loops were observed in CNST1, CNST2 and CNSS3 samples prepared via FIB. On the other hand, samples prepared via the ETE method revealed that a smaller number of defects was observed in CNST1, CNST2 and almost no defects were observed in CNST3. It is indicated that artifact defects could be introduced by FIB preparation. The PAS S-W plots showed that the existence of two types of defects after ion implantation included small-scale defects such as vacancies, vacancy clusters, dislocation loops and large-sized defects. The S parameter of irradiated steels showed a clear saturation in PAS response with increasing Fe+ dose. At the same irradiation dose, higher values of the S-parameter were achieved in CNST1 and CNST2 samples when compared to that in CNSS3 samples. The mechanism and evolution behavior of irradiation-induced defects were analyzed and discussed.


2017 ◽  
Vol 26 (8) ◽  
pp. 4046-4055 ◽  
Author(s):  
G. Miranda ◽  
P. Ferreira ◽  
M. Buciumeanu ◽  
A. Cabral ◽  
M. Fredel ◽  
...  

1999 ◽  
Vol 5 (S2) ◽  
pp. 914-915
Author(s):  
T. Kamino ◽  
T. Yaguchi ◽  
H. Matsumoto ◽  
H. Kobayashi ◽  
H. Koike

A method for site specific characterization of the materials using a dedicated focused ion beam(FIB) system and an analytical transmission electron microscope (TEM) was developed. Needless to say, in TEM specimen preparation using FIB system, stability of a specimen is quite important. The specimen stage employed in the developed FIB system is the one designed for high resolution TEM, and the specimen drift rate of the stage is less than lnm/min. In addition, FIB-TEM compatible specimen holder which allows milling of a specimen with the FIB system and observation of the specimen with the TEM without re-loading was developed. To obtain thin specimen from the area to be characterized correctly, confirmation of the area before final milling is needed. However, observation of cross sectional view in a FIB system is recommended because it causes damage by Ga ion irradiation. To solve this problem, we used a STEM unit as a viewer of FIB milled specimen.


Sign in / Sign up

Export Citation Format

Share Document