Study on the Development Model of Green Products Based on Concurrent Engineering

2014 ◽  
Vol 1037 ◽  
pp. 540-543
Author(s):  
Xi Yin Lou

concurrent engineering product development from the beginning of the design requirements, it must consider the various factors in the product life cycle, to shorten product development cycle, improve product quality, reduce the green characteristics of product cost, product realization, enhancing the competition ability of the enterprise purpose. Because in the whole process of product lifecycle highly concurrent engineering station, effect that participants work together, reconstruction of product development process and using advanced design methods, contributes to the technical information, economic information, environmental information, energy and resource information and insurance information of organic integration of each stage in the life cycle of product green design, the realization of green products from a life-cycle perspective. Therefore, the concurrent engineering is the core of the design and development of green products.

Author(s):  
Andreas Dagman ◽  
Rikard Söderberg

New customer demands and increased legislation drive business-oriented companies into new business models focusing on the entire life cycle of the product. This forces the manufacturing companies into service-oriented solutions as a compliment to the original business areas. Takata [1] postulates that “the goal is no longer to produce products in an efficient way, but rather to provide the functions needed by society while minimizing material and energy consumption”. This new situation affects the product requirements as well as product development process (PD). When focusing on the entire product life cycle, product aspects such as maintenance and repair will receive more attention since the companies will be responsible for them. In the product development process of today, especially in the automotive industry, maintenance and repair aspects (repair and maintenance methods and manuals, for example) are currently taken care of when the product is more or less fully developed. Maintenance and repair requirements are difficult to quantify in terms of core product properties (for vehicles, cost, CO2 emissions, weight, and so on). This leads to difficulties in equally considering maintenance and repair requirements while balancing vast amounts of product requirements. This paper focuses on a comparison and discussion of existing design guidelines affecting the structure and organization of parts in an assembled consumer product, such as Design for Assembly (DFA), Design for Maintenance (DFMa), Design for Service (DFS) and Design for Disassembly (DFD) methods. A tool for evaluation and analyzing product architecture as well as assemblability and maintainability is proposed.


Production ◽  
2015 ◽  
Vol 25 (3) ◽  
pp. 510-528 ◽  
Author(s):  
Angelo Varandas Junior ◽  
Paulo Augusto Cauchick Miguel ◽  
Marly Monteiro de Carvalho ◽  
Eduardo de Senzi Zancul

O objetivo deste trabalho é realizar um mapeamento e classificação da literatura, bem como uma análise bibliométrica sobre os conceitos Product Life Cycle Management (PLM), Product Development Process(PDP), Environmental Sustainability (ES) e suas interfaces. As publicações de interesse foram localizadas por meio de consultas na base de dados de periódicos da ISI Web of Knowledge, por meio do portal da CAPES, considerando publicações entre 2006 e 2010. Os resultados indicam que os trabalhos são publicados em uma gama variada de periódicos e congressos e que a maioria das publicações analisadas utiliza como abordagem metodológica o estudo de caso, mas também existe uma grande proporção de trabalhos teórico-conceituais. Quanto à natureza dos dados verificou-se que a abordagem qualitativa tem sido mais adotada e é praticamente predominante a condução de estudos descritivos. Em síntese, os trabalhos analisados incorporam o conceito de sustentabilidade ambiental e PLM no PDP e são mais aplicados em empresas, cadeia de suprimentos e desenvolvimento de software. De modo geral, os trabalhos analisados enfatizam a melhoria da gestão do PDP, o aumento do desempenho e a integração de informações de diferentes áreas e sistemas. A literatura converge para a inserção dos conceitos de sustentabilidade ambiental e PLM nas atuais práticas do PDP.


Author(s):  
BIREN PRASAD

The paper describes a set of seven fundamental principles for achieving “best concurrency and simultaneity.” The concurrent approach is gaining worldwide attention at this moment. The paralleling of life-cycle activities and process restructuring are being deemed necessary by more and more industries. An automobile product development process example is used in this paper to illustrate many aspects of these seven principles. The principles help the concurrent teams, first, to define how to decompose the product, process and work activities and then, how to arrange these decomposed activities so that “best concurrency and simultaneity” can be achieved.


Author(s):  
Paul Christoph Gembarski ◽  
Stefan Plappert ◽  
Roland Lachmayer

AbstractMaking design decisions is characterized by a high degree of uncertainty, especially in the early phase of the product development process, when little information is known, while the decisions made have an impact on the entire product life cycle. Therefore, the goal of complexity management is to reduce uncertainty in order to minimize or avoid the need for design changes in a late phase of product development or in the use phase. With our approach we model the uncertainties with probabilistic reasoning in a Bayesian decision network explicitly, as the uncertainties are directly attached to parts of the design artifact′s model. By modeling the incomplete information expressed by unobserved variables in the Bayesian network in terms of probabilities, as well as the variation of product properties or parameters, a conclusion about the robustness of the product can be made. The application example of a rotary valve from engineering design shows that the decision network can support the engineer in decision-making under uncertainty. Furthermore, a contribution to knowledge formalization in the development project is made.


Author(s):  
J. Schmitz ◽  
S. Desa

Abstract It is well-known that so-called Concurrent Engineering is a desirable alternative to the largely sequential methods which tend to dominate most product development methods. However, the proper implementation of a concurrent engineering method is still relatively rare. In order to facilitate the development of a reliable concurrent engineering product development method, we start with a careful definition of concurrent engineering and, after an extensive study of all of product development, we propose three criteria which ideal concurrent engineering must satisfy. However, for labor, time, and overall cost considerations, ideal concurrent engineering is infeasible. Instead, we propose a computer-based environment which, by being constructed in accordance with the three criteria, attempts to approach ideal concurrent engineering. The result is the Virtual Concurrent Engineering method and computer implementation environment. This product development method and computer-based implementation system provide the detailed, structured information and data needed to optimally balance the product with respect to the main product development parameters (e.g., manufacturing costs, assembly, reliability). This important information includes re-design suggestions to improve the existing design. The designer can directly apply these re-design suggestions for design optimization, or he can use the results as input into a more complex design optimization or design parameterization function of his own. To demonstrate Virtual Concurrent Engineering, we use it to refine earlier work done by the authors in the Design for Producibility of stamped products. We discuss, in some detail, the results of applying Design for Producibility to complex stampings, including process plans and product producibility computations.


2020 ◽  
Vol 28 (3) ◽  
pp. 210-221
Author(s):  
Gyesik Oh ◽  
Yoo Suk Hong

Many companies adopt concurrent engineering in their product-development projects in order to reduce time to market. Concurrent engineering requires careful management, since the uncertainty of transferred information leads to rework and renders a development process complex. Most of the existing studies on concurrent engineering have analyzed overlapping between two activities. The present study expanded the research scope by modeling the developmental process of the concurrent execution of multiple activities as the result of management decisions, the overlapping ratio, and the information transfer frequency. When multiple activities are overlapped, it is more difficult to model a development process, since the uncertainty of cascaded information has impacts on many activities. The quantitative model developed in the present study provides insights into the uncertainty of information and the product-development process. Based on the generalized process model for multiple-activity overlapping, the optimal decision to minimize project duration was considered. As a solution to the dilemma of the high computational burden of considering all feasible decision sets, this paper proposes a myopic heuristic. The project management heuristic proposed in this paper is intended to assist managers in the decision-making process, as well as reducing the intermediate deadlines in project main plan.


2019 ◽  
Vol 297 ◽  
pp. 02007
Author(s):  
Boris Bazrov ◽  
Mikhail Kheifetz ◽  
Nikolay Popok

The shortcomings of the traditional description of the engineering product are shown. It is proposed to represent the design of the product and its details with a structured set of corresponding modules, in the form of a graph of a hierarchical structure. The characteristics of the structure of the product graph are considered: the number of levels, nodes, branches. The description of the structures of products by a hierarchical graph at the first level makes it possible to identify functional technological modules of the products and, on their basis, to construct a unified classification of products as objects of exploitation. Representation of parts by a set of modules allows you to identify modules based, working and connecting surfaces and on their basis to build a single classification of parts, focused on different stages of the product life cycle. The presence of a unified methodological base allows you to manage the development of product designs, minimize duplication in the creation of new designs and effectively develop technologies for their manufacture.


Sign in / Sign up

Export Citation Format

Share Document