XRD Analysis of Al-6vol%SnPb Composites Fabricated by Cold Forging Process with Various Sintering Temperatures

2015 ◽  
Vol 1087 ◽  
pp. 420-423
Author(s):  
Marwan Zakaria ◽  
Siti Rodiah Karim ◽  
Nur Azam Badarulzaman

This paper focused on fabrication of Al-6vol%SnPb from recycled Aluminium and recycled solder and its characterization in different sintering temperature. Al-20SnPb was fabricated by using cold forging process of flakes chip raw materials. Constant pressure (56.4 MPa) was used to implement cold forging process. Various sintering temperature (200 0C, 250 0C, 300 0C and 3500C) was studied to obtain the optimum hardness properties. The diffraction pattern of X-Ray diffraction (XRD) reveals the influence of varying sintering temperature of Al-6vol%SnPb. Vickers hardness result also support that, optimum result obtained is at sintering temperature 300 °C.

2020 ◽  
Vol 13 (1) ◽  
pp. 16-25
Author(s):  
Zi Wang ◽  
Hongjun Chen ◽  
Chunhu Yu ◽  
Zeyang Xue ◽  
Pengxiang Wang ◽  
...  

Background: The deposits of iron tailing will pose a great risk of environmental pollution and serious landscape impact which will affect the quality of life of humans. Therefore, it is urgent to utilize iron tailing to produce valuable products. Methods: The tailing ceramsites were analysed by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The roles of the tailing content, sintering temperature and duration time in the performance of the tailing ceramsites were analysed and the optimal sintering parameters were determined. Results: The bulk density, apparent density and cylinder compressive strength of the tailing ceramsites increase considerably with the increase of the sintering temperature and duration time. The cylinder compressive strength of the tailing ceramsites increases with increasing the tailing content. The optimal sintering parameter is 1100°C for 40 min. The cylinder compressive strength of the tailing ceramsites obtained at 1100°C for 40 min reaches 10.1 MPa. XRD analysis shows that the tailing ceramsites mainly consist of CaSiO3, Al2SiO5, MgSiO3, Ca7Si2P2O16, CaAl2Si2O8, Ca2Fe2O5 and SiO2 phases when the sintering temperature and duration time were increased to 1100°C and 40 min, respectively. Conclusion: The tailing ceramsites were obtained from iron tailing, sludge and fly ash as the raw materials at 1100°C for 40 min. The obtained ceramsites exhibited high mechanical performance.


2011 ◽  
Vol 399-401 ◽  
pp. 855-859
Author(s):  
Ting Ting Wu ◽  
Bo Lin Wu

In order to improve the acid resistance and reduce the apparent density of fracturing proppants, TiO2 powder added in the system of BaO-MgO-Al2O3 fracturing proppants were prepared by the technique of pressureless sintering. The properties of the samples were investigated by the measurements of acid solubility, X-ray diffraction and scanning electron microscopy. The results show that the acid solubility of alumina matrix fracturing proppants contenting TiO2 of the 4wt% and BaO/MgO with the ratio of 3:7 is 0.15%. It is an important development in acid resistance performance of fracturing proppants research on laboratory. TiO2 is added to the raw materials and then calcine them to ceramics, which can reduces the sintering temperature, promote the densification and improve acid-resistant property of fracturing proppants.


2013 ◽  
Vol 465-466 ◽  
pp. 1003-1007
Author(s):  
Nur Azam Badarulzaman ◽  
Siti Rodiah Karim ◽  
Mohd Amri Lajis

Solid-state direct conversion method of recycled aluminium 6061 alloy to produce metal-metal composites was studied by using collected recycle chip. Different volume percent of stannum (Sn) matrix was studied to attempt the tensile strength and surface integrity of the aluminium composites product. Constant pressure was used to implement the cold forging process with constant sintering temperature. Single size of chip had been used which 2 mm length as suggested. The optimum result of yield strength and ultimate tensile strength is 3 Pa and 8.3 Pa for 20 vol% of Sn composition. Analysis shows that composites beyond 20 vol% Sn resulted in the tensile strength decreased.


2016 ◽  
Vol 680 ◽  
pp. 257-260
Author(s):  
Meng Yun Dong ◽  
Cheng Zhang ◽  
Jin Feng Xia ◽  
Hong Qiang Nian ◽  
Dan Yu Jiang

CaF2 nano-power was prepared by direct precipitation methods with Ca(NO3)2 and KF as raw materials. The influences of presintering temperature and sintering temperature on the particle size and distribution of CaF2 nano-power were studied by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). This study provided an experimental method for preparation of CaF2 nano-power. The results show that the best presintering temperature of CaF2 nano-power is 500°C and the best sintering temperature of CaF2 ceramic is 900°C.


2007 ◽  
Vol 336-338 ◽  
pp. 1124-1126
Author(s):  
Xiao Su Cheng ◽  
Ling Ke Zeng ◽  
Xiu Yan Li ◽  
Wen Yan Sheng ◽  
An Ze Shui ◽  
...  

In this paper, microspheres were prepared by using Chinese bauxite as raw materials through centrifugal spray drying method. The microstructure and composition of ceramic microsphere were investigated by X-ray diffraction, scanning electron microscope and X-ray energy spectrum. The particle size was 10~100#m. The XRD analysis reveals that the main crystalline phase of the ceramic microsphere were α-Al2O3 and mullite (3Al2O3•2SiO2). The Al2O3 content (chemical composition) of the microspheres was little more than 70%, and the molar ratio of Al2O3/SiO2 was near to the molar ratio of alumina and silica of mullite.


Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1510 ◽  
Author(s):  
Dunlei Su ◽  
Gongbing Yue ◽  
Qiuyi Li ◽  
Yuanxin Guo ◽  
Song Gao ◽  
...  

In this study, a variety of industrial solid wastes, including petroleum coke desulfurization slag, fly ash and carbide slag with natural resource bauxite, were used as raw materials to prepare high belite suphoaluminate cement, which contains a certain CaSO4 content without adding natural gypsum to the clinker. The sintering temperature, mineral composition, and the physical and mechanical properties of the cement clinkers were investigated. The techniques adopted included a comprehensive thermal analysis (DSC-TG), X-ray diffraction (XRD), X-ray fluorescence (XRF) and scanning electron microscopy (SEM). The results revealed that it is completely feasible to prepare high belite sulphoaluminate cement with the various industrial solid wastes mentioned above and the utilization rate of the solid wastes is up to 80%. The sintering temperature ranges from 1225 °C to 1350 °C, and the optimal sintering temperature is approximately 1300 °C. The clinkers prepared at 1300 °C set and harden quickly and have a slightly higher water requirement of normal consistency. The mechanical strength is greatly affected by the CaSO4 and 3CaO·3Al2O3·CaSO4 contents and the most reasonable CaSO4 content is 15%.


2010 ◽  
Vol 173 ◽  
pp. 116-121
Author(s):  
Mohd Salihin Hassin ◽  
Zuhailawati Hussain ◽  
Palaniandy Samayamutthirian

In this research carbothermal reduction of mechanical activated hematite (Fe2O3), anatase (TiO2) and graphite (C) mixture was investigated. Mixture of raw materials with composition of Fe-20vol%TiC was mechanically activated in a planetary ball mill with different milling time (0h-60h) in argon atmosphere. X-ray diffraction (XRD) results showed the intensity of Fe2O3 reduced with milling time. The activated powders were pressed using cold pressing under a constant pressure (100MPa) and heat treated at 1100°C for sintering in a vacuum furnace. The increase in milling time resulted in the formation of iron (Fe) and titanium carbide (TiC) phase as confirmed by XRD result.


2014 ◽  
Vol 602-603 ◽  
pp. 88-92 ◽  
Author(s):  
Hao Chen ◽  
Bing Bing Fan ◽  
Xin Zhang ◽  
Xiao Xuan Pian ◽  
Rui Zhang

A fast method of microwave pyrolysis was provided to prepare α-Al2O3 powders. Aluminum hydroxide and Aluminum ammonium sulfate doclecahydrate were used as raw materials to obtain α-aluminum oxide powder by microwave pyrolysis, respectively. Thermo-Gravimetric/Differential Thermal Analyzer (TG/DTA) and X-ray Diffraction (XRD) analysis were employed to investigate pyrolysis process and the transformation of metastables Al2O3 in the process of heating different precursors. Meanwhile, Flied Emission Scanning Electron Microscopy (FESEM) was applied to observe microstructure and grain growth, and the phase composition was characterized by XRD. The results indicated that the high purity α-Al2O3 was obtained which met the demands of market, and the sample obtained from aluminum hydroxide performed high purity, small particle size and, while the sample from ammonium aluminum sulfate showed lower purity and larger grain size.


2021 ◽  
Vol 9 (2) ◽  
pp. 95-102
Author(s):  
Sufriadin Sufriadin ◽  
Purwanto Purwanto ◽  
Muhammad Rahmatul Jihad ◽  
Astina Aras ◽  
Angelia Santoso ◽  
...  

Characterization of dolomite samples from Bone Bolango, Gorontalo Province have been performed with the objective to find out their mineralogical and chemical compositions. Observation and mineral analyses were carried out by means of microscopy and X-ray diffraction methods respectively; whereas chemical composition was determined by using X-ray fluorescence spectrometer. Result of XRD analysis shows that samples contain dolomite [CaMg(CO3)2], calcite [CaCO3] and [SiO2]. The proportion of dolomite is about 60.4% in average and its presence is as replacement of calcite in bioclast components and matrices in the rock. Dolomite crystals are characterized by mosaic texture with euhedral – subhedral in shapes. Spacially, dolomite content increase from west to the east of study area. The XRF analysis reveals that dolomite samples contain MgO ranging between 8.07 and 20.78% while CaO ranges between 30.04 and 56.13%. The SiO2 concentration ranges from 3.50 – 7.55%; whereas Al2O3 ranges from 1.07 – 1.84%. The average MgO content of dolomite about 12.89% can be categorized as calcium dolomite. Dolomite within the study area can be used directly in agriculture sector, but it less suitable as raw materials in glass, ceramic and refractory industries because the average content of MgO is less than 17%. However, it can be increased of their MgO with the application of selective mining or beneficiation process.


2009 ◽  
Vol 45 (1) ◽  
pp. 35-44 ◽  
Author(s):  
B.K. Shahraki ◽  
B. Mehrabi ◽  
R. Dabiri

Dolomite has a large amounts of MgO and is an important raw materials for steel, iron and refractory industries. In this paper thermal behavior of Zefreh dolomite at various temperatures was studied by differential thermal analysis (DTA), Thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT - IR) and powder X-ray diffraction (XRD) techniques. The DTA curve shows two endothermic peaks at 772 and 834?C. The first peak is associated with the formation of magnesia (MgO), calcite(CaCO3) and CO2. The second peak represents the decomposition of calcite with formation of CaO and further CO2 release. At 772?C quantitative XRD analysis in atmospheric condition shows small amounts of CaO (less than 2%) which form simultaneously or later than calcite. TGA curve shows total weight loss for decomposition of dolomite is 46.2%. By increasing heating time of samples in furnace, dolomite decomposes in lower temperatures. X-ray diffraction analysis of heat treated samples up to 750?C indicates that dolomite structure changes into calcite. The increases in quartz content accelerated the mechanochemical deformation and amorphization of dolomite phase. At high temperature ( more than 1000?C) Ca3Mg(SiO4)2 and CaSiO4 were formed. XRD and FTIR confirm dolomite decomposition reactions.


Sign in / Sign up

Export Citation Format

Share Document