Dry Sliding Wear Behavior of A356-ZrO2 Metal Matrix Composite

2015 ◽  
Vol 1125 ◽  
pp. 116-120
Author(s):  
Hamidreza Ghandvar ◽  
Saeed Farahany ◽  
Mohd Hasbullah Idris ◽  
Mohammadreza Daroonparvar

Dry sliding wear and friction behavior of cast A356 Al-Si alloy and composite containing 5wt. % ZrO2 particles were studied by means of a pins-on-disk apparatus over loads of 5N, 20N and a sliding speed of 0.628m/s. The experimental results showed that the composites exhibited a higher wear resistance in comparison to that of the unreinforced A356 alloy. The friction coefficient of tested materials increased with increasing applied load from 5 to 20 N. FESEM investigations revealed that the wear mechanism of the A356 matrix alloy changed from sever abrasive, adhesive wear into mild abrasion and adhesive wear with addition of 5wt. % ZrO2 reinforcement particles.

Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1749 ◽  
Author(s):  
Qing Zhang ◽  
Jie Gu ◽  
Shuo Wei ◽  
Ming Qi

The dry sliding wear behavior of the Al-12Si-CuNiMg matrix alloy and its composite reinforced with Al2O3 fibers was investigated using a pin-on-disk wear-testing machine. The volume fraction of Al2O3 fibers in the composite was 17 vol.%. Wear tests are conducted under normal loads of 2.5, 5.0, and 7.5 N, and sliding velocities of 0.25, 0.50, and 1.0 m/s. Furthermore, the worn surfaces of the matrix alloy and the composite were examined using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results showed that the wear resistance of the composite was inferior to that of the matrix alloy, which could be attributed to the high content of reinforcement and casting porosities in the composite. Worn-surface analysis indicates that the dominant wear mechanisms of both materials were abrasive wear and adhesive wear under the present testing conditions.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
N. Radhika ◽  
R. Raghu

LM13/AlN (10 wt. %) metal matrix composites (MMC) and unreinforced aluminum alloy were produced under stir casting route. Microstructural characteristics were examined on the developed composite using optical microscope. The hardness and tensile test were carried out on both unreinforced aluminum alloy and composite using Vickers hardness tester and universal testing machine (UTM), respectively. Dry sliding wear behavior of the composite and unreinforced aluminum alloy was evaluated using pin-on-disk tribometer based on the design of experiments approach. Experimental parameters such as applied load (10, 20, and 30 N), velocity (1, 2, and 3 m/s), and sliding distance (500, 1000, and 1500 m) were varied for three levels. Signal-to-noise (S/N) ratio analysis, analysis of variance, and regression analysis were also performed. The characterization results showed that reinforcement particles were uniformly distributed in the composite. The hardness and tensile test revealed greater improvement of property in composite compared to that of unreinforced alloy. Wear plot showed that wear was increased with increase in load and decreased with increase in velocity and sliding distance. S/N ratio analysis and analysis of variance (ANOVA) indicated that load has greater significance over the wear rate followed by velocity and sliding distance. Regression analysis revealed greater adequacy with the constructed model in predicting the wear behavior of composite and unreinforced aluminum alloy. Scanning electron microscopy (SEM) analysis is evident that the transition of wear from mild to severe occurred on increase of the load in the composite.


2018 ◽  
Vol 7 (2.23) ◽  
pp. 446
Author(s):  
Pankaj R Jadhav ◽  
B R Sridhar ◽  
Madeva Nagaral ◽  
Jayasheel I Harti ◽  
V Auradi

The present works manages readiness of the composites by mix stirring method. A356 amalgam 4 wt. % of B4C and A356-4 wt. % of Graphite and A356-4% B4C-4% Graphite hybrid composites were readied. To enhance the wetting and uniform conveyance of the particles, fortifications were preheated to a temperature of 500 Degree Celsius. The arranged MMCs are subjected to examining SEM instrument which affirms the homogenous uniform appropriation of smaller scale B4C and Graphite particles in the lattice combination without agglomeration. The wear protection of arranged composites was examined by performing dry sliding wear test utilizing DUCOM made stick on plate mechanical assembly. The tests were directed at a consistent heap of 3kg and sliding separation of 4000m over a speed of 100, 200 and 300 rpm. So also the other arrangement of investigations were led at consistent sped of 300 rpm and sliding separation of 4000m and with changing heap of 1kg, 2kg, and 3kg. The outcomes demonstrated that the wear protections of the composites were improved than the lattice material.   


Sign in / Sign up

Export Citation Format

Share Document