Some Studies on the Moisture Management Properties of Cotton and Bamboo Yarn Knitted Fabrics

2015 ◽  
Vol 1134 ◽  
pp. 225-230 ◽  
Author(s):  
Nadhirah Mohd Amran ◽  
Mohd Rozi Ahmad ◽  
Mohamad Faizul Yahya ◽  
Amily Fikry ◽  
Ahmad Munir Che Muhamed ◽  
...  

This paper reports on the moisture management properties of fabrics made from yarns of 100% cotton, 100% bamboo and combination of bamboo and cotton yarns. The fabrics were knitted on a circular knitting machine and scoured before measuring them for moisture management capability, air permeability and water vapour permeability. The results showed that all fabrics have good overall moisture management capability which classified them as water penetration fabric with small spreading area. The fabric consisting of the combination of bamboo and cotton yarns of 83/17 ratio gave the highest air and water vapour permeability.

2016 ◽  
Vol 28 (4) ◽  
pp. 420-428 ◽  
Author(s):  
Govindan Karthikeyan ◽  
Govind Nalankilli ◽  
O L Shanmugasundaram ◽  
Chidambaram Prakash

Purpose – The purpose of this paper is to present the thermal comfort properties of single jersey knitted fabric structures made from bamboo, tencel and bamboo-tencel blended yarns. Design/methodology/approach – Bamboo, tencel fibre and blends of the two fibres were spun into yarns of identical linear density (30s Ne). Each of the blended yarns so produced was converted to single jersey knitted fabrics with loose, medium and tight structures. Findings – An increase in tencel fibre in the fabric had led to a reduction in fabric thickness and GSM. Air permeability and water-vapour permeability also increased with increase in tencel fibre content. The anticipated increase in air permeability and relative water vapour permeability with increase in stitch length was observed. The thermal conductivity of the fabrics was generally found to increase with increase in the proportion of bamboo. Research limitations/implications – It is clear from the foregoing that, although a considerable amount of work has been done on bamboo blends and their properties, still there are many gaps existing in the literature, in particular, on thermal comfort, moisture management and spreading characteristics. Thus the manuscript addresses these issues and provides valuable information on the comfort characteristics of the blended fabrics for the first time. In the evolution of this manuscript, it became apparent that a considerable amount of work was needed to fill up the gaps existing in the literature and hence this work which deals with an investigation of the blend yarn properties and comfort properties of knitted fabrics was taken up. Originality/value – This research work is focused on the thermal comfort parameters of knitted fabrics made from 100 per cent tencel yarn, 100 per cent bamboo yarn and tencel/bamboo blended yarns of different blend ratios.


2016 ◽  
Vol 28 (3) ◽  
pp. 328-339 ◽  
Author(s):  
Rajesh Mishra ◽  
Arumugam Veerakumar ◽  
Jiri Militky

Purpose – The purpose of this paper is to investigate effect of material properties in 3D knitted fabrics on thermo-physiological comfort. Design/methodology/approach – In the present study six different spacer fabrics were developed. Among these six fabrics, it was classified into two groups for convenient analysis of results, the first group has been developed using polyester/polypropylene blend with three different proportion and second group with polyester/polypropylene/lycra blend having another three different composition. As a spacer yarn, three different types of 88 dtex polyester monofilament yarn and polyester multifilament yarns (167 dtex and 14.5 tex) were used and 14.5 tex polypropylene and 44 dtex lycra multifilament yarns were also used for the face and back side of the spacer fabrics (Table I). These fabrics were developed in Syntax Pvt Ltd Czech Republic. Findings – The main influence on the water vapour permeability of warp knitted spacer fabrics is the kind of raw material, i.e. fibre wetting and wicking. Also there is no correlation between air permeability and water vapour permeability. It is found that both air permeability and thermal conductivity are closely related to the fabric density. It is also found that the fabric characteristics of spacer fabric show a very significant effect on the air permeability, thermal conductivity and mechanical properties of spacer fabric. Therefore, selection of spacer fabric for winter clothing according to its fabric characteristics. Practical implications – The main objective of the present study is to produce spacer knitted 3D fabrics suitable for defined climatic conditions to be used as clothing or in sports goods. Originality/value – New 3D knitted spacer fabrics can be produced with improved comfort properties.


2021 ◽  
Author(s):  
Ramratan Guru ◽  
Anupam Kumar ◽  
Rohit Kumar

Moisture management property is an important aspect of any fabric meant for active wear fabric, which decides the comfort level of that fabric specially used as active wear garments. Regular physical activity is important to maintain consistency in human health. To achieve comfort and functional support during various activities such as walking, stretching, jogging etc., athletes and sports persons use active wear clothing. A fabric’s moisture management performance is also influenced by its air and water vapour permeability. The moisture management finish (MMF) and Antimicrobial finish (AMF) have been used to increase moisture absorbency; improves wetting, wicking action and antimicrobial performance. In this study, influence of MMF and AMF finishes on the moisture management property of different knitted active wear fabrics had been carried out. For the study two different knit fabrics of 100% Polyester and 100% Nylon with three different GSM levels (100, 130 and 160) has been selected. Further two varieties of commercially available functional fabric finishes have been also taken for the study. The result shows that in case of finished fabric at certain concentration level, as the fabric GSM increases the value of Accumulative one-way transport index (OWTI) %, water vapour permeability but same time drying rate increases. The result shows that in case of finished fabric at certain concentration level, as the fabric GSM increases the value of accumulative one-way transport index (OWTI) %, water vapour permeability decreases but same time drying rate increases. The knitted fabrics of 100% Polyester and 100% Nylon composition follow the similar trend. Further with the increase of fabric finish concentration level, OWTI %, and water vapour permeability (WVP) factor decreases while the drying rate increases.


2014 ◽  
Vol 14 (3) ◽  
pp. 174-178 ◽  
Author(s):  
Viera Glombikova ◽  
Petra Komarkova

Abstract This study evaluates the efficiency of non-flammable functional underwear used as a secondary heat barrier in extreme conditions. Five groups of knitted fabrics were analysed for flame resistance and selected physiological properties (water vapour permeability, air permeability, thermal resistance and liquid moisture transport by moisture management transport). The results indicated similar levels of flame resistance for the materials tested but show important differences in terms of physiological characteristics, namely liquid moisture transport, which influences the safety and comfort of protective clothing.


2018 ◽  
Vol 69 (03) ◽  
pp. 177-182
Author(s):  
ZAHRA QURBAT ◽  
MANGAT ASIF ELAHI ◽  
FRAZ AHMAD ◽  
HUSSAIN SAJID ◽  
ABBAS MUDASSAR ◽  
...  

Air and moisture transport properties of plain woven fabric made from 20sNec cotton in warp and 20sNec pure yarns of tencel, modal, pro-modal, bamboo, polyester and cotton yarn inweft direction are studied. Major characteristics added for this study include water vapour permeability, air permeability, wettingtime and wicking speed. In comparison of six different samples of variously composed materials in weft direction, the air permeability of tencel was minimum and polyester was maximum, whereas the reverse results were observed for both the samples in case of water vapour permeability. Among the blends with cotton, thermal conductivity of bamboo and thermal absorptivity of polyester was found maximum whereas the minimum thermal resistance was observed for pro modal yarn in weft. Similar pattern was observed in spreading speed and wetting time of the polyester when observed from either side top or bottom. Air and moisture comfort properties of bamboo and pro modal, having nearly similar values are suggested to be used in garments used for golf players


2020 ◽  
Vol 71 (04) ◽  
pp. 302-308
Author(s):  
MINE AKGUN ◽  
GIZEM KARAKAN GUNAYDIN ◽  
AYÇA GÜRARDA ◽  
ERHAN KENAN ÇEVEN

Turkish traditional Buldan weavings are known as special fabrics in terms of providing comfortable clothes which are known to be natural and healthy in Denizli, Turkey. The research presented in this paper assesses the effects of different fabric structural parameters of Buldan fabrics on comfort properties such as thermal resistance, thermal absorptivity, water vapour permeability and air permeability. Five different Buldan fabrics woven with different fabric structural parameters were produced. According to test results, cotton/Tencel Buldan fabrics indicated similar comfort properties with the 100% cotton Buldan fabric properties. Additionally, the lowest thermal absorptivity was observed from 100% cotton Buldan fabrics which give the warmth feeling among the evaluated samples.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 140
Author(s):  
Karel Adámek ◽  
Antonin Havelka ◽  
Zdenek Kůs ◽  
Adnan Mazari

In the field of textile comfort of smart textiles, the breathability of the material is very important. That includes the flow of air, water and water vapours through the textile material. All these experiments are time consuming and costly; only air permeability is much faster and economical. The research is performed to find correlation between these phenomena of breathability and to predict the permeability based on only the air permeability measurement. Furthermore, it introduces a new way of expressing the Ret (water vapour resistance) unit according to SI standards as it is connected with the air permeability of garments. The need to find a correlation between air permeability and water vapour permeability is emphasised in order to facilitate the assessment of clothing comfort. The results show that there is a strong relation between air permeability and water vapour permeability for most of the textile material.


2011 ◽  
Vol 81 (19) ◽  
pp. 2006-2016 ◽  
Author(s):  
Akbar Khoddami ◽  
Mohammad I Soleimani ◽  
Hugh Gong

The effects of finishing steps on hollow and solid polyester/wool have been studied in order to establish the processing behaviour and performance characteristics of fabrics from these fibres. The effect of hollow fibres on fabric tensile strength, pilling, and crease recovery were studied. In addition, the water vapour permeability, air permeability, thermal properties and fabric handle were investigated. The results show that finishing has no adverse effects on fabric strength. By using hollow fibres in the fabrics, the extent of pilling was reduced. Among the different steps of finishing, scouring has the most significant effect on fabric hand due mainly to the large reduction in both bending, and shear rigidity and hysteresis. The results on crease recovery, water vapour permeability and air permeability revealed that the fabric properties are more affected by the fabric structure than the type of polyester fibre. In addition, while the hollow fibre fabrics always have lower thermal conductivity than similar fabrics with solid polyester fibres, their thermal properties are greatly affected by the dyeing process.


2018 ◽  
Vol 30 (1) ◽  
pp. 29-37
Author(s):  
Ramakrishnan G. ◽  
Prakash C. ◽  
Janani G.

Purpose The purpose of this paper is to investigate plasma treatment for Tencel microfibre fabrics for possible improvement in various functional properties. Design/methodology/approach The plasma treated and untreated fabrics were dyed using reactive dyes and evaluated for comfort properties such as wicking, water vapour permeability and air permeability. Findings The various comfort properties of plasma treated and an untreated Tencel microfibre fabric have been studied. The wicking results showed a significant reduction in wicking time for plasma treated fabrics compared to untreated fabrics. The test results for water vapour permeability show no significant difference between plasma treated and untreated fabrics. The plasma treated samples show higher air permeability than untreated samples. In the wetting test, it is clearly seen that the plasma treated samples absorbed the water at a faster rate. Originality/value This research investigates plasma treatment for Tencel microfibre fabrics for possible improvement in various functional properties.


2019 ◽  
Vol 19 (1) ◽  
pp. 44-53
Author(s):  
Abdur Razzaque ◽  
Pavla Tesinova ◽  
Lubos Hes

Abstract Waterproof breathable laminated fabrics have the special property that permits water vapour to pass through but protects by preventing the entrance of liquid water. Different characteristic properties of the layered constructions of these fabrics have good influence on their hydrostatic resistance and mechanical performance. This research study presents an experiment to enhance the hydrostatic resistance and tensile strength of four different types of hydrophobic membrane laminated waterproof fabrics by considering their breathability as well. For this purpose, water repellent coating based on C6-fluorocarbon resin along with polysiloxane hydrophobic softening agent was applied on these four different types of laminated fabrics using pad-dry-cure method. The coated fabrics were characterised by performing different experiments to evaluate the effect of coating on their hydrostatic resistance and mechanical property as well as on water vapour permeability and air permeability. From the test results and analysis of variance (ANOVA), it was found that hydrostatic resistance and tensile strength of the laminated fabrics were enhanced after coating along with proper water repellent property, whereas there were no significant changes in their water vapour permeability and air permeability.


Sign in / Sign up

Export Citation Format

Share Document