Low Cost Vibration Measurement and Optimization during Turning Process

2018 ◽  
Vol 1148 ◽  
pp. 103-108 ◽  
Author(s):  
N.V.S. Shankar ◽  
A. Gopi Chand ◽  
K. Hanumantha Rao ◽  
K. Prem Sai

During machining any material, vibrations play a major role in deciding the life of the cutting tool as well as machine tool. The magnitude acceleration of vibrations is directly proportional to the cutting forces. In other words, if we are able to measure the acceleration experienced by the tool during machining, we can get a sense of force. There are many commercially available, pre-calibrated accelerometer sensors available off the shelf. In the current work, an attempt has been made to measure vibrations using ADXL335 accelerometer. This accelerometer is interfaced to computer using Arduino. The measured values are then used to optimize the machining process. Experiments are performed on Brass. During machining, it is better to have lower acceleration values. Thus, the first objective of the work is to minimize the vibrations. Surface roughness is another major factor which criterion “lower is the better” applies. In order to optimize the values, a series of experiments are conducted with three factors, namely, tool type (2 levels), Depth of cut (3 levels) and Feed are considered (3 levels). Mixed level optimization is performed using Taguchi analysis with L18 orthogonal array. Detailed discussion of the parameters shall be given in the article.

Author(s):  
Prof. Hemant k. Baitule ◽  
Satish Rahangdale ◽  
Vaibhav Kamane ◽  
Saurabh Yende

In any type of machining process the surface roughness plays an important role. In these the product is judge on the basis of their (surface roughness) surface finish. In machining process there are four main cutting parameter i.e. cutting speed, feed rate, depth of cut, spindle speed. For obtaining good surface finish, we can use the hot turning process. In hot turning process we heat the workpiece material and perform turning process multiple time and obtain the reading. The taguchi method is design to perform an experiment and L18 experiment were performed. The result is analyzed by using the analysis of variance (ANOVA) method. The result Obtain by this method may be useful for many other researchers.


2016 ◽  
Vol 16 ◽  
pp. 7-15 ◽  
Author(s):  
Nirmal Kumar Mandal ◽  
Tanmoy Roy

Abstract. Kinetic energy of a machining process is converted into heat energy. The generated heat at cutting tool and work piece interface has substantial impact on cutting tool life and quality of the work piece. On the other hand, development of advanced cutting tool materials, coatings and designs, along with a variety of strategies for lubrication, cooling and chip removal, make it possible to achieve the same or better surface quality with dry or Minimum Quantity Lubrication (MQL) machining than traditional wet machining. In addition, dry and MQL machining is more economical and environment friendly. In this work, 20 no. of experiments were carried out under dry machining conditions with different combinations of cutting speed, feed rate and depth of cut and corresponding cutting temperature and surface roughness are measured. The no. of experiments is determined through Design of Experiments (DOE). Nonlinear regression methodology is used to model the process using Response Surface Methodology (RSM). Multi-objective optimization is carried using Genetic Algorithm which ensures high productivity with good product quality.


2021 ◽  
pp. 113-124
Author(s):  
Nhu-Tung Nguyen ◽  
Do Duc Trung

Surface roughness that is one of the most important parameters is used to evaluate the quality of a machining process. Improving the accuracy of the surface roughness model will contribute to ensure an accurate assessment of the machining quality. This study aims to improve the accuracy of the surface roughness model in a machnining process. In this study, Johnson and Box-Cox transformations were successfully applied to improve the accuracy of surface roughness model when turning 3X13 steel using TiAlN insert. Four input parameters that were used in experimental process were cutting velocity, feed rate, depth of cut, and insert-nose radius. The experimental matrix was designed using Central Composite Design (CCD) with 29 experiments. By analyzing the experimental data, the influence of input parameters on surface roughness was investigated. A quadratic model was built to explain the relationship of surface roughness and the input parameters. Box-Cox and Johnson transformations were applied to develop two new models of surface roughness. The accuracy of three surface roughness models showed that the surface roughness model using Johnson transformation had the highest accuracy. The second one model of surface roughness is the model using Box-Cox transformation. And surface roughness model without transformation had the smallest accuracy. Using the Johnson transformation, the determination coefficient of surface roughness model increased from 80.43 % to 84.09 %, and mean absolute error reduced from 19.94 % to 16.64 %. Johnson and Box-Cox transformations could be applied to improve the acuaracy of the surface roughness prediction in turning process of 3X13 steel and can be extended with other materials and other machining processes


2008 ◽  
Vol 389-390 ◽  
pp. 151-156 ◽  
Author(s):  
Zhi Yu Zhang ◽  
Ji Wang Yan ◽  
Tsunemoto Kuriyagawa

Reaction-bonded silicon carbide (RB-SiC) is a recently developed ceramic material with many merits such as low manufacturing temperature, dense structure, high purity and low cost. In the present paper, the precision machinability of RB-SiC was studied by microindentation and single-point diamond turning (SPDT) tests. The influence of depth of cut and tool feed rate on surface roughness and cutting force was investigated. Results showed that there was no clear ductile-brittle transition in machining behavior. The material removal mechanism involves falling of the SiC grains and intergranular microfractures of the bonding silicon, which prevents from large-scale cleavage fractures. The minimum surface roughness depends on the initial material microstructure in terms of sizes of the SiC grains and micro pores. This work preliminarily indicates that SPDT can be used as a high-efficiency machining process for RB-SiC.


2020 ◽  
Author(s):  
waqas javaid ◽  
Tauqeer Iqbal ◽  
Ammar ul Hassan

Abstract High surface quality, optimum Material Removal Rate (MRR) and Tool-Chip Interface temperature (T c ) have significant importance in machining process. Similarly, dimensional accuracy in machining process also relies heavily on machining parameters. In machining operations, there are a number of parameters which have direct or indirect effect on the Surface Roughness (Ra) and MRR of the product. The surface roughness and MRR in turning process are affected by spindle speed (SS), feed rate (FR) and depth of cut (DOC). The optimization of turning parameters will be very helpful in improving quality of manufacturing and machining cost. In order to have an improved product, extensive research has been carried out to optimize machining process. The current research is focused at Response Surface Methodology (RSM) of turning process of Aluminum alloy (BS-1474 2014 A) by using variable sets of machining parameters i.e., SS, FR and DOC with carbide tipped tool. Multiple experiments were performed on CNC Lathe machine by using different combinations of process parameters. Response surface methodology was applied to reach theoretical values of the responses parameters (i.e, Ra, MRR, T c ) and an agreement was observed between actual machining results and methodology values. Design Expert-7 was used as a statistical tool to come to a conclusion on whether achieved results are optimum for turning process or otherwise. For a close correlation, comparison between hypothetical and investigational data is also the part of this research. Significant agreement between theoretically optimized machining parameters and experimental data has been observed.


2014 ◽  
Vol 941-944 ◽  
pp. 275-279 ◽  
Author(s):  
Jozef Zajac ◽  
Zuzana Hutyrová ◽  
Imrich Orlovský

Study provides information about one type of bio-based composite – plastic with wood reinforcement in volume more than 50 % (advantage: renewable, inexpensive, can be used to isolate a sound and have got a low density) and about machining of this unique material. During the machining (turning process was use to produce a surfaces by removing material from a rotating workpiece) were changed two parameters – rotation speed and feed rate (depth of cut was constant). There were observed changes of parameter to surface roughness with change of conditions of machining process.


2021 ◽  
Vol 3 (1) ◽  
pp. 65-72
Author(s):  
Ardyan - ◽  
Erwansyah - ◽  
Yang Fitri Arriyani

The benchmark for the results of the machining process can be seen from the results of the products, one of which is the level of surface smoothness. The purpose of this experimental research is to find out how much cutting speed (Vc) and depth of cutting produce a workpiece with the smoothest level of surface roughness for the turning process carried out by students at the Bangka Belitung State Manufacturing Polytechnic Workshop. This research is using experimental method. The cutting speeds (Vc) used were 23 m/min, 24 m/min, 25 m/min, the cutting depths used were 0.5 mm, 0.8 mm, and 1.0 mm and the feeding speed was set at 0.040 mm/rev. The results showed that the best turning results using a cutting speed (Vc) of 23 m/min was using a cutting depth of 0.5 mm with a roughness value (Ra) of 1.372 m, using a cutting speed (Vc) of 24 m/min using a depth of cut. 0.5 mm with a roughness value (Ra) of 1.189 m and using a cutting speed (Vc) of 25 m/min using a depth of 0.5 mm with a surface roughness value (Ra) of 3.14 m. The lowest value for the level of surface roughness of the turning process was obtained using a cutting speed (Vc) of 24 m/min with a depth of 0.5 mm with a surface roughness value (Ra) of 1.189 m.


ROTOR ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 23
Author(s):  
Ahmad Khoirul Anwar ◽  
Digdo Listyadi ◽  
Dwi Djumhariyanto

Turning machining process is a warkpiece diameter reduction by using chisel cut to produce the shape of the workpiece on a turning, there are various types of machining turning chisel pieces on the turning chisel types include carbide, CBN, and insert. There are also other types on conventional chisel on a turning process, one of which is a turning type of high speed steel (HSS), the turning is widely used in coventional production processes for other than low cost is also easy to grinding. Parameter in this research is coolant and depth of cut. The coolant used is dromus, ex-oil, ex cooking oil. The depth of cut used is 0,3mm, 0,5mm amd 0,8mm. The highest of tool life in this reserch with dromus as coolant at 0,3mm depth of cut is 83,17 minutes. With ex-oil at 0,3 depth of cut the tool life is 70,79 minutes. And with ex-cooking oil the tool life is 56,77 minutes with 0,3mm depth of cut. While the lowest tool life be obtained with ex-cooking oil coolant at 0,8mm depth of cut is 38,90 minutes. So, the canclusion dromus is a batter then ex-oil and ex-cooking oil. This is caused when the dromus as coolant can mixed with water and become one so can get down temperture of chisel.


INSIST ◽  
2016 ◽  
Vol 1 (1) ◽  
pp. 54
Author(s):  
Gusri Akhyar ◽  
Suryadiwansa Harun ◽  
Arinal Hamni

Abstract - Magnesium and magnesium alloys is one of materials that worldwide used on automotive components due to very good  strength to weight ratio, resistant to corrosion, lighter compare to steel materials. Other than that magnesium has an advantage in easy to form and good machinability.  Nevertheless, magnesium known as metal which is easy to burned because of magnesium has low melting point. To maintain magnesium from burning quickly when proses machining, it needs to use coolant or lubricant to reduce temperature. Using of coolant when machining process can reduce temperature on cutting tool and work piece material, while using of lubricant can reduce friction between the cutting tool and work piece mateial. However, using of coolant and lubricant can harm for the environment and also coolant difficult to destroyed. Therefore, an alternative method to reduce the temperature when machining of magnesium alloy is using  the rotary cutting tool system. In the rotary cutting tool system, the cutting tool has a time to experience cooling in the period time. Other than aspect of temperature, surface roughness values are representative of surface of quality of produced componens. In this research, surface roughness value of magnesium alloy of AZ31 observed in ranges of work piece cutting speed of  (Vw) 25, 50, 120, 160, 200 m/min, rotary cutting speed of (Vt) 25, 50, 75 m/min, feed rate of (f) 0,05  and 0,10 mm/rev, and depth of cut of 0.2 mm. The turning process was done by using two kinds of diameter of rotary cutting tools are 16 and 20 mm, and without applying of coolant. The results of the research showed that the minimum surface roughness value of machined surface was 0,62𝝻m by using insert with diameter of 16 mm, while the maximum surface roughness value of machined surface was 2,86 𝝻m by using insert with diameter of 20 mm. This result stated that the increase in the diameter of rotary cutting tool gives a significant effect on the produced surface roughness value. Factor of feed rate also gives a significant contribution on the surface roughness value of machined magnesium surface.  The increase in feed rate generated significantly surface roughness value as long as the trials experiments. The produced surface roughness values inversely proportional to the cutting speed of rotary cutting tool.Keywords - magnesium, rotary tool, surface roughness, turning. 


2020 ◽  
Vol 38 (11A) ◽  
pp. 1593-1601
Author(s):  
Mohammed H. Shaker ◽  
Salah K. Jawad ◽  
Maan A. Tawfiq

This research studied the influence of cutting fluids and cutting parameters on the surface roughness for stainless steel worked by turning machine in dry and wet cutting cases. The work was done with different cutting speeds, and feed rates with a fixed depth of cutting. During the machining process, heat was generated and effects of higher surface roughness of work material. In this study, the effects of some cutting fluids, and dry cutting on surface roughness have been examined in turning of AISI316 stainless steel material. Sodium Lauryl Ether Sulfate (SLES) instead of other soluble oils has been used and compared to dry machining processes. Experiments have been performed at four cutting speeds (60, 95, 155, 240) m/min, feed rates (0.065, 0.08, 0.096, 0.114) mm/rev. and constant depth of cut (0.5) mm. The amount of decrease in Ra after the used suggested mixture arrived at (0.21µm), while Ra exceeded (1µm) in case of soluble oils This means the suggested mixture gave the best results of lubricating properties than other cases.


Sign in / Sign up

Export Citation Format

Share Document