Study on the Crystallization and Morphology of HDPE-g-GMA Modified PA66/UHMWPE Blends

2010 ◽  
Vol 123-125 ◽  
pp. 239-242
Author(s):  
Zi Nian Zhao ◽  
Wen Hua Zhang ◽  
Gang Qiang Lei

By means of melt compounding method, the Glycidyl methacrylate (GMA) grafted HDPE modified Polyamide 66 (PA66) with ultra high molecular weight polyethylene (UHMWPE) blends were prepared via the co-rotating twin screw extruder.The effects of different UHMWPE/HDPE contents on properties of PA66/UHMWPE blends were investigated.Meanwhile, the mechanical properties such as tensile and impact strength etc. were investigated. By using the differential scanning calorimetry (DSC) and scanning electron microscope (SEM), the crystalline and morphology of PA66/UHMWPE blends were analyzed. The results show that UHMWPE toughened PA66 samples exhibit significantly enhanced impact strength and elongation at break comparison with natural PA66. The samples of PA66 with 30% of UHMWPE/HDPE (mass ratio 3/7) blends show impact strength about 2 times and elongation at yield 7 times more than those of natural PA66.The behavior of HDPE-g-GMA shows an effective compatibilizer for PA66/UHMWPE blends, when the mass ratio of PA66/(UHMWPE/HDPE) at 70:30, the blend indicates the best comprehensive property. The investigation on crystallization and morphology of PA66 and their blends show that the behaviors of melting about the two components are independent either PA66 or UHMWPE/HDPE. There are independent melting behaviors, meanwhile, interacted each other between PA66 and UHMWPE. Due to the good compatibility which HDPE-g-GMA contributed, the homogenous PA66/UHMWPE blends could be achieved. The photographs of SEM analysis indicate that the interface action of PA66 and polyethylene is enhanced by compatibilizer HDPE-g-GMA.

2020 ◽  
Vol 12 (13) ◽  
pp. 5272
Author(s):  
Carlos Bruno Barreto Luna ◽  
Danilo Diniz Siqueira ◽  
Eduardo da Silva Barbosa Ferreira ◽  
Wallisson Alves da Silva ◽  
Jessika Andrade dos Santos Nogueira ◽  
...  

The practice of recycling over the years has been increasingly encouraged, with the aim being the manufacturing of materials that contribute to sustainable development. In light of this, the present work evaluated the potential of mixtures of polystyrene (PS)/recycled copolymer polypropylene (PPr), using styrene-(ethylene/butylene)-styrene (SEBS) as a compatibilizing agent. Initially, the mixtures were prepared in a co-rotational twin-screw extruder, and, afterwards, the extruded granules were molded by injection. The properties of torque rheometry, impact strength, tensile properties, differential scanning calorimetry (DSC), heat deflection temperature (HDT), and scanning electron microscopy (SEM) were evaluated. The formulation PS/PPr/SEBS (70/20/10 %wt.) demonstrated an increase in viscosity, corroborating with an increase of 123% and 227% in the elongation at break and impact strength, respectively, compared to neat PS. Though the elastic modulus and tensile strength suffered losses, the reduction was not drastic. Furthermore, the addition of a semi-crystalline recycled material in the amorphous matrix (PS) contributed to an increase in thermomechanical strength, as seen in the HDT. The morphology revealed that SEBS is effective in making PS/PPr mixtures compatible because the dispersed phase is well adhered to the PS matrix and promotes greater morphological stability. Thus, it is possible to add value to discarded material and reduce the costs of the final product, which can reduce pollution.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 890
Author(s):  
Mateusz Barczewski ◽  
Olga Mysiukiewicz ◽  
Aleksander Hejna ◽  
Radosław Biskup ◽  
Joanna Szulc ◽  
...  

In this work, thermally expanded vermiculite (TE-VMT) was surface modified and used as a filler for composites with a polylactide (PLA) matrix. Modification of vermiculite was realized by simultaneous ball milling with the presence of two PLA chain extenders, aromatic carbodiimide (KI), and 4,4’-methylenebis(phenyl isocyanate) (MDI). In addition to analyzing the particle size of the filler subjected to processing, the efficiency of mechanochemical modification was evaluated by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The composites of PLA with three vermiculite types were prepared by melt mixing and subjected to mechanical, thermomechanical, thermal, and structural evaluation. The structure of composites containing a constant amount of the filler (20 wt%) was assessed using FTIR spectroscopy and SEM analysis supplemented by evaluating the final injection-molded samples’ physicochemical properties. Mechanical behavior of the composites was assessed by static tensile test and impact strength hardness measurements. Heat deflection temperature (HDT) test and dynamic thermomechanical analysis (DMTA) were applied to evaluate the influence of the filler addition and its functionalization on thermomechanical properties of PLA-based composites. Thermal properties were assessed by differential scanning calorimetry (DSC), pyrolysis combustion flow calorimetry (PCFC), and thermogravimetric analysis (TGA). The use of filler-reactive chain extenders (CE) made it possible to change the vermiculite structure and obtain an improvement in interfacial adhesion and more favorable filler dispersions in the matrix. This translated into an improvement in impact strength and an increase in thermo-mechanical stability and heat release capacity of composites containing modified vermiculites.


e-Polymers ◽  
2009 ◽  
Vol 9 (1) ◽  
Author(s):  
Serena Coiai ◽  
Marco Scatto ◽  
Monica Bertoldo ◽  
Lucia Conzatti ◽  
Leonardo Andreotti ◽  
...  

AbstractA careful insight into melt compounding procedure is proposed in order to achieve a better understanding and control of the dispersion and orientation mechanisms of organo-clay platelets into LDPE nanocomposites. The method involved is the preparation of a maleic anhydride grafted polyethylene masterbatch containing 10 wt% organo-clay via twin-screw extrusion. A substantial nanodispersion and orientation of clay platelets was obtained as observed by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses. Moreover, the nanocomposites prepared by diluting the master-batch through the blend mixing with additional LDPE preserved or improved the exfoliation and lamellae orientation. Finally, the thermo-gravimetric analysis (TGA) showed a significant improvement of the thermal stability while both differential scanning calorimetry (DSC) and XRD evidenced a slight increase of the LDPE crystallinity degree with respect to neat polymer matrices thus suggesting the occurrence of orientation also for the polymer.


2005 ◽  
Vol 13 (4) ◽  
pp. 385-394
Author(s):  
Huiyu Bai ◽  
Yong Zhang ◽  
Yinxi Zhang ◽  
Xiangfu Zhang ◽  
Wen Zhou

New toughened poly(butylene terephthalate) (PBT)/bisphenol A polycarbonate (PC) blends were obtained by melt blending with commercial poly(ethylene-co-octene) copolymer (POE), varying the POE content up to 10 wt%, in a twin screw extruder, followed by injection moulding. The influence of POE on the properties of the PBT/PC blends was investigated in terms of mechanical testing, dynamic mechanical thermal (DMTA) analysis, differential scanning calorimetry (DSC), and scanning electronic microscopy (SEM). The results showed that addition of POE led to remarkable increases in the impact strength, elongation at break and Vicat temperature, and a reduction in the tensile strength and flexural properties of PBT/PC blends. The morphology of the blends was observed using SEM and the average diameter of the dispersed phase was determined by image analysis. The critical inter-particle distance for PBT/PC was determined.


2019 ◽  
pp. 089270571988095 ◽  
Author(s):  
Eduardo da Silva Barbosa Ferreira ◽  
Carlos Bruno Barreto Luna ◽  
Edcleide Maria Araújo ◽  
Danilo Diniz Siqueira ◽  
Renate Maria Ramos Wellen

Large waste amounts from wood industries as powder and sawdust are daily produced, and reusing these materials otherwise would be discharged to the environment has become an economically viable and environmentally friendly alternative to produce new materials. Based on these arguments, polypropylene (PP)/Jatobá wood powder composites upon addition of two types of PP were processed in a corotational twin screw extruder; specimens were injected and molded and their characterization was performed through differential scanning calorimetry, thermogravimetry, mechanical properties (impact, tensile, flexural, and hardness), heat deflection temperature (HDT), Vicat softening temperature, and scanning electron microscopy (SEM). Increased elastic modulus, shore D hardness, HDT, and Vicat related to neat PPs were reached. Nevertheless, losses in impact and tensile strength as well as in elongation at break were also verified. These lower data may be associated with the wood agglomeration, as shown in SEM images. Apparently, the investigated properties were not affected by PP viscosities, where both of them presented similar data. Summing up, presented results can be considered commercially feasible, focusing at economic and environmental benefits while producing higher performance products.


2013 ◽  
Vol 33 (2) ◽  
pp. 111-119
Author(s):  
Yiming Liu ◽  
Qing Liu ◽  
Bing Meng ◽  
Zhihua Wu

Abstract Polycaprolactone (PCL)-coated micro kaolin and nano-titania were prepared by high-speed hybrid mechanical coating. Poly(butylene succinate) (PBS)-coated inorganic particle composites were prepared by the melt-blending process. The influence of coated kaolin microparticles on the dynamic rheological behavior, non-isothermal crystallization behavior, micromorphology, and mechanical behavior were investigated. The effect of coated nano-titania on the mechanical properties of PBS-coated kaolin composites was also studied. A dynamic rheological property indicates that the complex viscosity of PBS-coated kaolin microcomposites is higher than neat PBS. Differential scanning calorimetry (DSC) implies that the micrometric size of kaolin particles restrains the crystallization of PBS. Scanning electronic microscopy (SEM) reveals a well dispersed state of coated kaolin in the polymer matrix. The impact strength of PBS-coated kaolin microcomposites is improved, while the tensile strength and elongation at break is decreased, but still appreciable. The introduction of coated nano-titania improves the impact strength dramatically, and the elongation at break of composites is considerable.


Author(s):  
Zuhair Jabbar Abdul Ameer ◽  
Nabeel Hasan Hameed

 Mixing two polymers usually results in an immiscible system, characterized by a coarse, easy to alter morphology, and poor adhesion between the phases. These blends have large size domains of dispersed phase and poor adhesion between them. Therefore, miscibility of polymer blend must be improved by using suitable additives such as compatibilizer. In this study 5% of silane 3-(trimethoxysilyl)propyl methacrylate is used as compatibilizer to improve the miscibility and compatibility of LDPE/PVA blends. The samples were prepared by using a twin screw extruder. LDPE and PVA have been mixed with different weight proportion. Several tests were carried out to identify the compatibility and miscibility of the blends such as tensile properties, hardness, density, Fourier transforms infrared FTIR, digital microscope, scanning electron microscopy SEM and differential scanning calorimetry DSC. Result show that tensile strength, young modulus, elongation at break, density and hardness is increased with silane addition to the blends. SEM and digital microscope shows an improvement in the miscibility due to the better interaction between the two polymers as silane is added.


2013 ◽  
Vol 781-784 ◽  
pp. 390-394
Author(s):  
Xiao Li Song ◽  
Ying Chen ◽  
Yu Zhi Xu ◽  
Chun Peng Wang

Polyacrylate microsphere with different core/shell ratio (mass ratio) were prepared by semi-continuous seed emulsion copolymerization using butyl acrylate (BA) and methyl methacrylate (MMA) as main monomers,which were used to toughen polylactic acid (PLA) after drying. The effect of core/shell ratio of polyacrylate toughening agent (ACR) on mechanical properties of PLA was studied. The results showed that when adding 8wt%ACR, the impact strength and elongation at break of PLA were both first increased and then decreased as increasing of core/shell ratio, while the tensile strength loss of PLA was little changed. It is found that the impact strength was increased about 24% than that of neat PLA as well as the elongation at break was increased from 2% to 12% when the ratio was 7/3, which was the best ratio.


2019 ◽  
Vol 17 (1) ◽  
pp. 557-563 ◽  
Author(s):  
Barıs Oner ◽  
Tolga Gokkurt ◽  
Ayse Aytac

AbstractIn this study, the aim was to examine the effects of three different compatibilizers on the recycled polyethylene/ thermoplastic starch (r-LDPE/TPS) blends which are used in producing garbage bags. Polyethylene-Grafted-Maleic Anhydride (PEgMAH), maleic-anhydride modified ethylene propylene rubber (EPMgMAH) and ethylene maleic anhydride copolymer (PEMAH) were selected as the compatibilizers. r-LDPE/TPS blends with or without compatibilizer were prepared by using a twin screw extruder and characterized by means of mechanical, thermal, structural and morphological analyses. It was found that tensile strength values increased with the addition of PEgMAH but decreased with the addition of EPMgMAH. Elongations at break values of the r-LDPE/TPS blends were significantly improved by using PEgMAH and EPMgMAH. Tm and Tc values have slightly affected by the compatibilizer usage in the DSC analysis. In addition, the better interfacial interaction was observed for the compatibilized blend with the PEgMAH and EPMgMAH during the SEM analysis. It was concluded that PEgMAH and EPMgMAH showed mainly changed results in elongation at break values and this is the important parameter in the packaging industry.


2012 ◽  
Vol 535-537 ◽  
pp. 103-109 ◽  
Author(s):  
Xiang Min Xu ◽  
Li Ping Guo ◽  
Yu Dong Zhang ◽  
Zhi Jun Zhang

The polyoxymethylene-based composites containing reactable nano-SiO2were prepared in a twin-screw extruder by melt compounding, and mechanical and thermal properties of pure polyoxymethylene (POM) and composites were investigated. The results showed that reactable nano-SiO2could reinforce the tensile strength and Young’s modulus of composites. To the impact strength of composites, there was obvious improvement when a small amount of silica was added into POM. With the increase of silica content, the impact strength of composites showed a gradually decrease trend. It was worthy to note that reactable nano-SiO2could significantly increase the decomposition temperature of POM. When the content of reactaSubscript textble nano-SiO2was up to 5 wt%, the degradation temperature of composites could increase about 38.3°C under nSubscript textitrogen atmosphere and 43.8°C under air atmosphere, respectively, compared with pure POM. Furthermore, the differential scanning calorimetry (DSC) analysis showed that reactable nano-SiO2had a good heterogeneous nucleation capability in POM, and could increase crystallization temperature of POM, but surface structure of reactable nano-SiO2was not propitious to the growth of POM crystals, accordingly leading to the decreasing crystallinity of composites.


Sign in / Sign up

Export Citation Format

Share Document