Environmental Effects on Mechanical Properties of Modified and Unmodified Carbon Nanotube/Epoxy Resin Nanoomposites

2010 ◽  
Vol 123-125 ◽  
pp. 69-72
Author(s):  
Wei Jen Chen ◽  
Kung Wei Ho ◽  
Yi Luen Li ◽  
Ming Yuam Shen ◽  
Chin Lung Chiang ◽  
...  

The composites of mechanical and thermal properties of modified and unmodified Carbon nanotube /epoxy resin nanocomposites tested under various circumstances is a major investigation in this study. Identification of functional groups of CNT surface using Fourier transforms infrared spectroscopy (FTIR) was done to male sure if the means of modification adopted in this study is successfully. The tensile and flexural strengths of modified CNT-containing nanocomposites with the amount of modified CNT around 0.75 Phr tested under room temperature circumstance increase 10.96 % and 21.44 % respectively. These two strengths of nanocomposites tested under high temperature circumstance increase 14.55 % and 10.80 % respectively. Additionally, both strengths of nanocomposites tested under high temp.-high humidity circumstance increase 11.65 % and 23.53 % respectively. According to the test results using pyris diamond thermomechanical analyzer (TMA) coefficient decreases 39.81 % with increasing the content of modified CNT and meanwhile glass transition temperature increases 4.15 %. Because of above-mentioned effect, a modified CNs-containing nanocomposite possesses great thermo stability. Overall, No matter what circumstance (high temperature or high temp.-high humidity circumstances) nanocomposites expose to, and no matter whether CNT are modified or not, CNT do significantly enhance mechanical and physical properties of composite.

2018 ◽  
Vol 7 (4) ◽  
pp. 128-134
Author(s):  
Yu TONOZUKA ◽  
Tatsuya KOBAYASHI ◽  
Ikuo SHOHJI ◽  
Hiroaki HOKAZONO ◽  
Kuniaki TAKAHASHI ◽  
...  

2015 ◽  
Vol 1113 ◽  
pp. 13-18 ◽  
Author(s):  
Zyad Salem Alsagayar ◽  
Abdul Razak Rahmat ◽  
Agus Arsad ◽  
Alireza Fakhari ◽  
Amirali Khalili

Epoxidized vegetable oils based thermoset materials are widely used to develop biopolymers and to replace the fossil-fuel based polymers. In this paper, a blend of epoxy resin and epoxidized palm oil (EPO) were prepared and characterized by direct and pre-mixed methods to investigate its mechanical properties. For direct method, epoxy and EPO were mixed for 20 minutes at room temperature followed by curing for 2 hours at 100 °C. On other hand, for pre-mixed method, the EPO was reacted with hardener at 120 °C for 1 and 2 hours. Then it was mixed with epoxy resin at room temperature for 20 minutes followed by curing for 2 hours at 100 °C. Fourier transforms infrared spectroscopy [FTIR] and mechanical properties tests were used to characterize the blend. FTIR showed that, a reaction of epoxide group in EPO with active hydrogen atom from hardener and produced a hydroxyl group at 3300 cm-1. In general, the mechanical properties of epoxy resin/EPO were decreased when the amount of EPO was increased. However, at constant amount of EPO Young’s modulus, toughness, flexural strength, and flexural modulus were slightly increased when the time of EPO/hardener was increased. The mechanical properties were reduced due to the reduction of the cross linking density and effect of plasticizer.


2020 ◽  
Vol 12 (10) ◽  
pp. 1469-1475
Author(s):  
Dongdong Zhang ◽  
Xin Liu ◽  
Chengshun Yang ◽  
Lianghua Ni ◽  
Xiaoning Huang ◽  
...  

In this paper, the silicon rubber nanocomposites samples cut from the composite insulators operating in high humidity and high temperature areas for 0–13 years were taken as the research object. In accordance to previous research experiences, test methods such as static contact angle method, hardness test method were employed to investigate the changing law of lifespan prediction parameters with operating time. Based on test results, some lifespan prediction parameters significantly correlated with operating time were filtered by means of correlation calculation. On this basis, a prediction method which can be used to determine the operating time of the nanocomposites was proposed based on BP neural network. Test results indicate that lifespan prediction parameters including HC, θ, A, T, H, XO were significantly correlated with the operating time of the insulation material from composite insulator, and these parameters can be used to characterize the aging degree accurately. Besides, due to the high accuracy in experimental verification, the lifespan prediction method proposed in this paper can be used to determine the operating time of composite insulators from transmission lines in future research.


2019 ◽  
Vol 32 (3) ◽  
pp. 306-315 ◽  
Author(s):  
Liang Xu ◽  
Yi He ◽  
Shaohua Ma ◽  
Li Hui

T800/high-temperature epoxy resin composites with different hole shapes were subjected to hygrothermal ageing and thermal-oxidative ageing, and the effects of these different ageing methods on the open-hole properties of the composites were investigated, including analyses of the mass changes, surface topography changes (before and after ageing), fracture morphologies, open-hole compressive performance, dynamic mechanical properties and infrared spectrum. The results showed that only physical ageing occurred under hygrothermal ageing (70°C and 85% relative humidity), and the equilibrium moisture absorption rate was only approximately 0.72%. In contrast, under thermal-oxidative ageing at 190°C, both physical ageing and chemical ageing occurred. After ageing, the open-hole compressive strength of the composite laminates with different hole shapes decreased significantly, but the open-hole compressive strength after thermal-oxidative ageing was greater than that after hygrothermal ageing. Among the aged and unaged laminates, the laminates with round holes exhibited the largest open-hole compressive strength, followed by those with the elliptical holes, square holes and diamond holes. The failure modes of the laminates were all through-hole failures. The unaged samples had a glass transition temperature ( T g) of 226°C, whereas the T g of the samples after hygrothermal ageing was 208°C, which is 18°C less than that of the unaged samples, and the T g of the samples after thermal-oxidative ageing was 253°C, which is 27°C greater than that of the unaged samples.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2429
Author(s):  
Krittameth Kiatiporntipthak ◽  
Nanthicha Thajai ◽  
Thidarat Kanthiya ◽  
Pornchai Rachtanapun ◽  
Noppol Leksawasdi ◽  
...  

Polylactic acid (PLA) was melt-blended with epoxy resin to study the effects of the reaction on the mechanical and thermal properties of the PLA. The addition of 0.5% (wt/wt) epoxy to PLA increased the maximum tensile strength of PLA (57.5 MPa) to 67 MPa, whereas the 20% epoxy improved the elongation at break to 12%, due to crosslinking caused by the epoxy reaction. The morphology of the PLA/epoxy blends showed epoxy nanoparticle dispersion in the PLA matrix that presented a smooth fracture surface with a high epoxy content. The glass transition temperature of PLA decreased with an increasing epoxy content owing to the partial miscibility between PLA and the epoxy resin. The Vicat softening temperature of the PLA was 59 °C and increased to 64.6 °C for 0.5% epoxy. NMR confirmed the reaction between the -COOH groups of PLA and the epoxy groups of the epoxy resin. This reaction, and partial miscibility of the PLA/epoxy blend, improved the interfacial crosslinking, morphology, thermal properties, and mechanical properties of the blends.


2001 ◽  
Vol 357-360 ◽  
pp. 1241-1244 ◽  
Author(s):  
M. Däumling ◽  
C.N. Rasmussen ◽  
F. Hansen ◽  
D.W.A. Willén ◽  
O.E. Schuppach ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document