Numerical Simulation of Creep Crack Propagation for Austenitic Stainless Steel 0Cr18Ni9 at 550°C

2011 ◽  
Vol 230-232 ◽  
pp. 596-599
Author(s):  
Li Jie Chen ◽  
Zun Qun Gong ◽  
Qi Zhao

First, tensile creep curve and creep propagation tests are conducted for austenitic stainless steel 0Cr18Ni9, i.e. 304 stainless steel at 550°C. The corresponding time hardening creep law is given for stresses ranging from 240 to 320 Mpa and the creep crack propagation length under a tension load of 10kN is measured by using QUESTAR long focus microscope system. Second, with the commercial finite element (FE) code ANSYS, the critical crack tip opening displacement (CTOD) is considered as crack propagation criterion to simulate the creep crack growth in the standard compact tension (CT) specimen. The FE predictions of the creep crack length in the primary and secondary stages are found to agree reasonably with the experimental results. The maximum computational error between the predictions and the experiment results is within 10%. Hence, the critical CTOD is a feasible criterion for crack growth simulations at elevated temperatures.

Author(s):  
Ali N. Mehmanparast ◽  
Catrin M. Davies ◽  
Mahmoud Ardakani ◽  
Kamran M. Nikbin

Compressive plastic pre-strain induced at room temperature in type 316H stainless steel, significantly influences the tensile, creep deformation and crack growth behaviour of the material. It is known that the material is hardened after pre-strain to 8% plastic strain and thus exhibits little or no plasticity during loading of uniaxial or creep crack growth (CCG) tests. In addition pre-compression (PC) has been found to reduce the creep rupture time, creep ductility and accelerate creep crack growth rates compared to as-received (AR) (i.e. uncompressed) material. In order to understand pre-straining effects on mechanical behaviour of 316H, optical and scanning electron microscopy (SEM) studies have been performed on uncompressed and 8% pre-compressed material. Samples have been examined in three orientations (i.e. parallel and perpendicular to the pre-compression direction). Furthermore, the influence of cold pre-compression on local creep damage formation ahead of the crack tip on interrupted CCG tests on AR and PC material has been studied. The results are discussed in terms of intergranular and transgranular damage caused by the compression process and the importance of microstructural changes on the mechanical behaviour of the material in long term tests.


Author(s):  
Woo-Gon Kim ◽  
Jae-Young Park ◽  
Hyeong-Yeon Lee ◽  
Eung-Seon Kim ◽  
Seon-Jin Kim

This study presents assessment of creep crack growth rates (CCGRs) for the base metal (BM), weld metal (WM), and heat affected zone (HAZ) of Gr. 91 weld joint, which was prepared by a shield metal arc weld (SMAW) method. A series of tensile, creep, creep crack growth (CCG) tests were performed for the BM, WM, and HAZ at the identical temperature of 550°C. The CCGR laws for the BM, WM and HAZ were constructed and compared in terms of a C*-fracture parameter. In addition, the CCGR law tested for BM was compared to that of RCC-MRx code. For a given value of C*, the WM and HAZ were almost similar in the CCGR, but they were significantly faster than the BM. This reason was closely attributed to the higher creep rate in the WM and HAZ than the BM. Currently elevated temperature design (ETD) code in French, RCC-MRx was found to be non-conservative in the CCGR when compared with the present investigation.


2010 ◽  
Vol 77 (12) ◽  
pp. 2385-2402 ◽  
Author(s):  
C.J. Hyde ◽  
T.H. Hyde ◽  
W. Sun ◽  
A.A. Becker

Sign in / Sign up

Export Citation Format

Share Document