Use of Cork Waste as Biosorbent for Hexavalent Chromium

2011 ◽  
Vol 324 ◽  
pp. 497-500 ◽  
Author(s):  
Zoubeida Sfaksi ◽  
Nourreddine Azzouz ◽  
Ahmed Abdelwahab

The biosorption by cork powder is considered as a new method for heavy metal removal from industrial waste waters such as chromium tanning factories. The aim of this study is to evaluate the efficiency extent of this method using a cork powder as biosorbent for hexavalent chromium Cr(VI). The Fourier Transform Infrared spectroscopy (FTIR) analysis permits to distinguish the type of functional groups likely to participate in metal binding. A linear form of BET isotherms for all the three used temperatures (25, 35 and 45°C) and a pseudo-second-order Lagergren equation of adsorption kinetics are obtained. Other experimental results highlight the meaningful influence of parameters such as contact time, pH and concentrations of the solution, on chromium adsorption rate that reach a 97% value under definite conditions particularly a pH of 2-3 values.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Waheed Ali Khoso ◽  
Noor Haleem ◽  
Muhammad Anwar Baig ◽  
Yousuf Jamal

AbstractThe heavy metals, such as Cr(VI), Pb(II) and Cd(II), in aqueous solutions are toxic even at trace levels and have caused adverse health impacts on human beings. Hence the removal of these heavy metals from the aqueous environment is important to protect biodiversity, hydrosphere ecosystems, and human beings. In this study, magnetic Nickel-Ferrite Nanoparticles (NFNs) were synthesized by co-precipitation method and characterized using X-Ray Diffraction (XRD), Energy Dispersive Spectroscopy (EDS) and Field Emission Scanning Electronic Microscopy (FE-SEM) techniques in order to confirm the crystalline structure, composition and morphology of the NFN’s, these were then used as adsorbent for the removal of Cr(VI), Pb(II) and Cd(II) from wastewater. The adsorption parameters under study were pH, dose and contact time. The values for optimum removal through batch-adsorption were investigated at different parameters (pH 3–7, dose: 10, 20, 30, 40 and 50 mg and contact time: 30, 60, 90, and 120 min). Removal efficiencies of Cr(VI), Pb(II) and Cd(II) were obtained 89%, 79% and 87% respectively under optimal conditions. It was found that the kinetics followed the pseudo second order model for the removal of heavy metals using Nickel ferrite nanoparticles.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1907
Author(s):  
Fatma Hussain Emamy ◽  
Ali Bumajdad ◽  
Jerzy P. Lukaszewicz

Optimizing the physicochemical properties of the chitosan-based activated carbon (Ch-ACs) can greatly enhance its performance toward heavy metal removal from contaminated water. Herein, Ch was converted into a high surface area (1556 m2/g) and porous (0.69 cm3/g) ACs with large content of nitrogen (~16 wt%) using K2CO3 activator and urea as nitrogen-enrichment agents. The prepared Ch-ACs were tested for the removal of Cr(VI) and Pb(II) at different pH, initial metal ions concentration, time, activated carbon dosage, and temperature. For Cr(VI), the best removal was at pH = 2, while for Pb(II) the best pH for its removal was in the range of 4–6. At 25 °C, the Temkin model gives the best fit for the adsorption of Cr(VI), while the Langmuir model was found to be better for Pb(II) ions. The kinetics of adsorption of both heavy metal ions were found to be well-fitted by a pseudo-second-order model. The findings show that the efficiency and the green properties (availability, recyclability, and cost effectiveness) of the developed adsorbent made it a good candidate for wastewaters treatment. As preliminary work, the prepared sorbent was also tested regarding the removal of heavy metals and other contaminations from real wastewater and the obtained results were found to be promising.


2015 ◽  
Vol 773-774 ◽  
pp. 1286-1290 ◽  
Author(s):  
M.F.H. Azizul-Rahman ◽  
A.A. Mohd Suhaimi ◽  
Norzila Othman

The heavy metal contain in the industrial wastewater can cause a pollution towards the environment and human due to its toxicity. Therefore extensive studies were conducted for the heavy metal removal. This study was conducted under several conditions by varying pH, biosorbent dosage, initial wastewater concentration and contact time. The results revealed that optimum pH, for high strength synthetic wastewater was 8.0 meanwhile for low strength synthetic wastewater was 7.0. Both high and low strength synthetic wastewater was optimum at 30 minutes of contact time with 1.5g and 0.02g of bisorbent dosage respectively. Meanwhile, the optimum initial metal concentration for high and low strength synthetic wastewater was 400ppm and 1ppm respectively. The results had proven that watermelon rind is able to treat wastewater with high and low concentration of metal.


2015 ◽  
Vol 72 (6) ◽  
pp. 983-989 ◽  
Author(s):  
Zheng-ji Yi ◽  
Jun Yao ◽  
Yun-fei Kuang ◽  
Hui-lun Chen ◽  
Fei Wang ◽  
...  

The excessive discharge of Pb(II) into the environment has increasingly aroused great concern. Adsorption is considered as the most effective method for heavy metal removal. Chinese walnut shell activated carbon (CWSAC) was used as an adsorbent for the removal of Pb(II) from aqueous solution. Batch experiments were conducted by varying contact time, temperature, pH, adsorbent dose and initial Pb(II) concentration. Adsorption equilibrium was established within 150 min. Although temperature effect was insignificant, the Pb(II) adsorption was strongly pH dependent and the maximum removal was observed at pH 5.5. The Pb(II) removal efficiency increased with increasing CWSAC dosage up to 2.0 g/L and reached a maximum of 94.12%. Langmuir and Freundlich adsorption isotherms were employed to fit the adsorption data. The results suggested that the equilibrium data could be well described by the Langmuir isotherm model, with a maximum adsorption capacity of 81.96 mg/g. Adsorption kinetics data were fitted by pseudo-first- and pseudo-second-order models. The result indicated that the pseudo-first-order model best describes the adsorption kinetic data. In summary, CWSAC could be a promising material for the removal of Pb(II) from wastewater.


2013 ◽  
Vol 15 (2) ◽  
pp. 40-47 ◽  
Author(s):  
Mohammad Taghi Ghaneian ◽  
Mohammad Hasan Ehrampoush ◽  
Asghar Mosleh Arany ◽  
Behzad Jamshidi ◽  
Mahboobeh Dehvari

In this study the removal of Cr (VI) from synthetic wastewater was investigated using Acroptilon repens (Russian Knapweed) flower powder under various conditions (pH, contact time and initial concentration of Cr). The capacity of chromium adsorption at equilibrium conditions by this biosorbent was increased by adsorbate concentration. The results also showed that the removal efficiency of Cr (VI) was increased by increasing the contact time. By increasing the initial concentration of Cr (VI) solution, chromium removal was reduced. The suitability of adsorbents and their constants was tested or evaluated with the Langmuir, Freundlich and Temkin isotherms models. The results indicated that the Freundlich and Langmuir models (R2 > 0.99) gave a better concordance to the adsorption data in comparison with the Temkin equation (R2 = 0.97). The adsorption of Cr (VI) followed the pseudo-second-order kinetics (R2 = 0.991). The study showed that Acroptilon repens flower powder can be used as an effective lignocellulosic biomaterial and biosorbent for the removal of Cr (VI) from wastewater.


2012 ◽  
Vol 18 (4-1) ◽  
pp. 509-523 ◽  
Author(s):  
Mina Gholipour ◽  
Hassan Hashemipour

In this study, the removal of hexavalent chromium from aqueous solutions using multi-walled carbon nanotubes (MWCNTs) has been investigated as a function of adsorbent dosage, initial Cr(VI) concentration, initial pH, contact time and temperature. Low pH, low initial concentrations of Cr(VI), increasing contact time and high temperature were found as optimal conditions. A comparison of kinetics models applied to the adsorption of Cr(VI) ions on the MWCNTs was evaluated for the pseudo first-order, the pseudo second-order, and Elovich kinetics models, respectively. Pseudo second-order kinetics model was found to correlate the experimental data well. Equilibrium isotherms were measured experimentally and results show that data were fitted well by the BET model. Thermodynamic parameters were estimated and results suggest that the adsorption process is spontaneous, physical and endothermic. The reversibility of Cr(VI) adsorption onto MWCNTs by desorption process and the effect of operating factors such as regeneration solution characteristics, contact time and temperature on this process was investigated. Results show that MWCNTs are effective Cr(VI) adsorbents and can be reused through many cycles of regeneration without any high decreasing in their performance.


2021 ◽  
Vol 16 (2) ◽  
pp. 436-451
Author(s):  
Meghdad Sheikhi ◽  
Hassan Rezaei

Abstract Treatment of the industrial wastewater before discharging into aquatic ecosystems using a new technology such as nanotechnology seems necessary. There are different methods for the removal of the heavy metals in the wastewater. In this study, nano-chitin was purchased from the Nano-Novin Polymer Company and used as an adsorbent for the removal of chromium (VI) ions from aqueous solution in a batch system. The effects of pH, temperature, contact time, concentration, and adsorbent dose were investigated. According to the results, the optimum conditions of adsorption occurred at pH = 6, temperature = 25 °C, 60 minutes contact time, and 0.6 g·L−1 adsorbent dose. Investigation of equilibrium isotherms showed that the isotherm fitted the Freundlich model with a correlation coefficient of R2 = 0.9689. The pseudo second-order model with the larger correlation coefficient had a greater fitness against experimental data in the kinetic studies. Thermodynamic parameters such as Gibbs free energy, enthalpy, and entropy were calculated, which indicated spontaneous, endothermic, and random processes, respectively. Given the good results of this project, nano-chitin can be suggested as a novel adsorbent which is highly capable of adsorbing hexavalent chromium from aqueous solutions.


Author(s):  
K. J. Naveen Kumar ◽  
J. Prakash

Developing countries are increasingly concerned with pollution due to toxic heavy metals in the environment. Unlike most organic pollutants which can be destroyed, toxic metal ions released into the environment often persist indefinitely circulating and eventually accumulating throughout the food chain thus posing a serious threat to mankind. The use of biological materials for heavy metal removal or recovery has gained importance in recent years due to their good performance and low cost. Among the various sources, both live and inactivated biomass of organisms exhibits interesting metal binding capacities. Their complex cell walls contain high content of functional groups like amino, amide, hydroxyl, carboxyl, and phosphate which have been implicated in metals binding. In the present study, Aspergillus niger was used to analyze the metal uptake from an aqueous solution. The determination of Cu+2, Pb+2, Cd+2, Zn+2, Co-2 and Ni+2 in samples was carried out by differential Pulse Anodic Voltammetry (DPASV) and the Voltammograms. Production of oxalic acid was carried out by submerged fermentation. The organism used in the present study has the ideal properties to sequester toxic metals and grow faster.


2020 ◽  
Vol 36 (05) ◽  
pp. 915-922
Author(s):  
Sunil Kumar ◽  
Rajesh Dhankhar

This study examined the utilization of Raw Eichhornia crassipes (REC) biomass to exclude the hexavalent chromium heavy metal from synthetic liquid for determination of sorption isotherm, kinetics and thermodynamic parameters of adsorption during the batch experiment process. The effect of adsorbent doses, agitation time and temperature on sorption capacity was studied. The plot qt versus t1/2 determined the intra-particle diffusion effect, which was not passing from the origin of plot indicated that apart from intra-particle diffusion some other mechanism also involved in this study. Freundlich isotherm better fitted as compared to Langmuir isotherm in the present study. The kinetics study show that pseudo-second-order better followed by REC adsorbent. At 293 K temperature, Δ Go negative value suggested that process favoured the sorption and spontaneous in nature, but at higher temperatures, positive values Δ Go confirmed the non-spontaneous nature of adsorption. It is concluded that Eichhornia crassipes dead biomass has the potential to treat wastewaters as an adsorbent.


2020 ◽  
Vol 4 (2) ◽  
pp. 33-25
Author(s):  
Queency P. Padida ◽  
Rolando V. Maningas ◽  
Christian Paul P. dela Cruz ◽  
Lustina P. Lapie ◽  
Nilda S. Alforja

Laguna de Bay is one of the country’s major lakes, providing a third of the fish consumed by Metro Manila’s 16 million residents. It also provides support for agriculture, industry, and hydropower generation, as well as providing a welcome respite for many Filipinos. However, because of the lake’s importance, it is threatened by a variety of issues, including pollution. Heavy metals such as mercury and lead are present in high concentrations in the lake. And these heavy metals may persist in fish, water, air and the human body. As a result, an adsorption technique for heavy metal removal in an aqueous solution was investigated. As an adsorbent, the produced chitosan from crustacean waste shells was employed. The study’s parameters were contact time, adsorbent quantity, and pH. Results showed that 0.5 g of chitosan has a higher absorption rate of 99% in 500 mg/L solutions compared to 1.0 g of chitosan with an adsorption rate of 98%. In terms of contact time, 60 minutes showed almost 100% adsorption rate while 120 minutes was 98%. With increasing pH, the amount of metal adsorption rises. This developed chitosan from crustacean waste shells indicates high capacity as adsorbent materials for heavy metals. As a result, it appears to be a viable material for water treatment.


Sign in / Sign up

Export Citation Format

Share Document