Evaluation of Genetic Diversity in Castor (Ricinus communis L.) using RAPD Markes

2011 ◽  
Vol 343-344 ◽  
pp. 981-987
Author(s):  
Feng Juan Li ◽  
Chang Lu Wang ◽  
Dong He ◽  
Ya Qiong Liu ◽  
Mian Hua Chen ◽  
...  

RAPD markers are used to study the genetic diversity of the main planting on 37 castor varieties widely cultivated in china according to the oil content and other characteristic of different castor varieties. Genetic distance of 37 Chinese castor varieties is studied by RAPD markers analysis. RAPD analysis shows that a total of 122 bands are amplified from random primers of 20 S series, including 71 polymorphic bands with polymorphic rate of 58.20%. 37 castor beans are divided into four major groups in the phylogenetic tree. One castor germplasm is included in1, 2, 3 groups respectively, and two sub-groups are included in the 4 major group.

Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 457
Author(s):  
HyokChol Kim ◽  
Pei Lei ◽  
Aizhi Wang ◽  
Shuo Liu ◽  
Yong Zhao ◽  
...  

Castor (Ricinus communis L.), known as castor oil plant or castor bean, is a non-edible oilseed crop. In the present study, the genetic diversity among 54 samples (3 wild and 51 cultivated) collected worldwide was evaluated using inter-simple sequence repeats (ISSRs) and random amplified polymorphic DNA (RAPD) markers. A total of 9 ISSR primers produced 83 high-resolution bands with 61 (74.53%) as polymorphic. The percentage of polymorphic bands per primer and the genetic similarity coefficient ranged from 54.55% (UBC-836) to 100% (UBC-808) and from 0.74 to 0.96, respectively. A total of 11 out of 20 RAPD primers amplified unique polymorphic products with an average percentage of polymorphic bands of 60.98% (56 polymorphic bands out of a total of 90 bands obtained). The percentage of polymorphic bands per primer ranged from 25% (OPA-02 and B7) to 90.91% (B21) with the genetic similarity coefficient ranging from 0.73 to 0.98. The unweighted pair group method with arithmetic averages (UPGMA) dendrogram using two molecular markers divided 54 castor genotypes into three groups. Furthermore, based on morphological data, all 54 castor varieties were grouped into three main clusters. The genetic diversity analysis based on two molecular makers showed that most varieties from China were closely related to each other with three varieties (GUANGDONGwild, ZHEJIANGWild, and HANNANWild) belonging to a wild group separated from most of the cultivated castor samples from China, India, France, and Jordan. These results suggested that the cultivated castor contains a narrow genetic base. Accordingly, we recommend that wild castor genetic resources be introduced for breeding novel castor varieties. Furthermore, the Vietnam, Malaysia, Indonesia, and Nigeria accessions were clustered into the same group. The results of principal coordinate analysis (PCoA) and UPGMA cluster analysis were consistent with each other. The findings of this study are important for future breeding studies of castor.


10.5219/1116 ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 294-300 ◽  
Author(s):  
Martin Vivodík ◽  
Ezzeddine Saadaoui ◽  
Želmíra Balážová ◽  
Zdenka Gálová ◽  
Lenka Petrovičová

Castor (Ricinus communis L.) is a plant that is commercially very important to the world. It is produced in about 30 countries lying in the tropical belt of the world. It is an important plant for production of industrial oil. Assessment of genetic diversity of a crop species is a prerequisite to its improvement; hence it is important to identify the genetic diversity of castor genetic resources for development of improved cultivars. The present study is focused on estimation of genetic distance between 56 Tunisian castor genotypes, based on 18 RAPD markers. Seeds of castor were obtained from the University of Carthage, National Institute of Research in Rural Engineering, Waters and Forests (INRGREF), Regional Station of Gabès, Tunisia. The ricin genotypes were obtained from 12 regions of Tunisia. The efficacy of the RAPD technique in this study is further supported by the obtained PIC values of the primers used in the analysis. PCR amplification of DNA using 18 primers for RAPD analysis produced 145 DNA fragments that could be scored in all 56 genotypes of Tunisian castor. The number of amplified fragments varied from 3 (OPE-07) to 13 (SIGMA-D-01), and the amplicon size ranged from 100 to 1500 bp. Of the 145 amplified bands, 145 were polymorphic, with an average of 8.11 polymorphic bands per primer. The lowest values of polymorphic information content were recorded for RLZ 9 (0.618) and the the highest PIC values were detected for OPD-08 (0.846) with an average of 0.761. A dendrogram was constructed from a genetic distance matrix based on profiles of the 18 RAPD primers using the unweighted pair-group method with the arithmetic average (UPGMA). According to analysis, the collection of 56 Tunisian castor genotypes were clustered into five main clusters. Genetically the closest were four genotypes from cluster 1 (BT-1 – S-5 and K-1 – N-3). Knowledge of the genetic diversity of castor can be used in future breeding programs for increased oil production to meet the ever increasing demand of castor oil for industrial uses as well as for biodiesel production.


2019 ◽  
Vol 4 (2) ◽  
pp. 52
Author(s):  
Mufit Daryatun Asniawati ◽  
Aziz Purwantoro

Croton (Puring) is a native  plant of Indonesia which has varied leaf shapes and colors. The diversity of croton increase through hybridization. The information on genetic diversity and relationship between parent and its offspring of crotons is very limited. This study aims to analyze the genetic diversity of cultivar Mawar (MW) and Walet (W) as parent compare to their offspring i.e, Black Marlet (BM), Kingkit 1 (KA), Kingkit 2 (KB), and Kamaratih (KM) using RAPD markers. This study used DNA extraction from the fresh leaf of six cultivars. The next steps were DNA quantification, primary optimization, DNA amplification with PCR, and electrophoresis. Statistical analysis was carried out using Genalex software. A total of 40 primers were screened, out of which 10 were selected for the analysis of genetic diversity. A total of 106 polymorphic bands were generated, ranging from 130 to 1850 bp. The results of RAPD analysis showed that Mawar as female parent had the highest polymorphic bands percentage of 69.01%, while Walet as male parent and its offspring ranged from 31.15 % to 43.94%. The genetic distance of the offspring with Walet ranged from 0.176 to 0.234 and genetic distance of the offspring with Mawar ranged from 0.314 to 0.372. It was indicated that all of offspring were closer to the male parent.


2003 ◽  
Vol 128 (1) ◽  
pp. 94-99 ◽  
Author(s):  
Roberto F. Vieira ◽  
Peter Goldsbrough ◽  
James E. Simon

Molecular markers were used to assess genetic diversity in basil (Ocimum L. spp., Lamiaceae). Using randomly amplified polymorphic DNA (RAPD) analysis, 11 primers generated 98 polymorphic bands, ranging from 300 to 2,000 base pairs, that discriminated among 37 accessions across nine Ocimum spp. Means of genetic similarities within Ocimum spp. showed that the domesticated species, O. minimum L. (0.887), O. basilicum L. (0.769), and O. ×citriodorum Vis. (0.711) had highest similarity indices within species, while the nondomesticated, O. americanum L. (0.580), O. gratissimum L. (0.408), and O. kilimandscharicum Guerke (0.559) showed the lowest similarity. RAPD results indicated that O. minimum should not be considered a distinct species but rather a variety of O. basilicum. Consistent clusters among all but one of the O. ×citriodorum spp., all containing citral as the major constituent, were identified using bootstrap analysis. RAPD analysis was useful in discriminating among Ocimum spp., although within species resolution will require a higher number of polymorphic bands.


Genome ◽  
1995 ◽  
Vol 38 (2) ◽  
pp. 201-210 ◽  
Author(s):  
F. N. Wachira ◽  
R. Waugh ◽  
W. Powell ◽  
C. A. Hackett

Camellia sinensis is a beverage tree crop native to Southeast Asia and introductions have been made into several nonindigenous countries. No systematic assessment of genetic variability in tea has been done anywhere. In this study, random amplified polymorphic DNA (RAPD) analysis was used to estimate genetic diversity and taxonomic relationships in 38 clones belonging to the three tea varieties, assamica, sinensis, and assamica ssp. lasiocalyx. Extensive genetic variability was detected between species, which was partitioned into between and within population components. Seventy percent of the variation was detected within populations. Analyses based on band sharing separated the three populations in a manner consistent with both the present taxonomy of tea and with the known pedigrees of some clones. RAPD analysis also discriminated all of the 38 commercial clones, even those which cannot be distinguished on the basis of morphological and phenotypic traits.Key words: genetic diversity, RAPDs, Camellia sinensis.


2021 ◽  
Vol 66 (3) ◽  
pp. 170-179
Author(s):  
Sengsoulichan Dethvongsa ◽  
Vu Nguyen Anh ◽  
Van Tran Khanh

RAPD (Randomly Amplified Polymorphic DNA) is an indicator for high and stable polymorphism, widely used in the study of the diversity of cassava. In this paper, the results of using 20 polymorphic primers OPK combined with the establishment of the phylogenetic tree to analyze the genetic diversity of 26 cassava varieties with different responses to waterlogging conditions by using the RAPD-PCR technique were presented. The purpose of this experiment was to show the genetic relevance of the studied cassava varieties. The results showed that the flood tolerance of cassava was not related to the polymorphism and branching characteristics of the stem. This information may be use as a basis for selecting flood-tolerant cassava varieties for cassava production, as well as the basis for selecting genetically different parents for breeding.


2019 ◽  
Vol 11 (3) ◽  
pp. 467-474
Author(s):  
Bolaji Zuluqurineen SALIHU ◽  
Olamide Ahmed FALUSI ◽  
Adeyinka Olufemi ADEPOJU ◽  
Ibrahim Wasiu AROLU ◽  
Oladipupo Yusuf DAUDU ◽  
...  

Castor oil plant (Ricinus communis L.) is an important oil crop with little research attention in Nigeria. In the present research, extent of genetic diversity among 20 Nigerian castor genotypes was determined using morphological descriptors and molecular markers. The genotypes were laid out on a randomized complete block design with three replicated plots. Molecular genotyping of the genotypes was carried out using genomic Simple Sequence Repeats (SSR). The genotypes revealed high divergence in seed colour, seed shape, seed mottle, seed caruncle and seed sizes. Seedling establishment varied from 70.18% (in Acc. 006) to 93.25% (Acc. 001) with average mean of 81.53%. Raceme length ranged from 15.90 cm to 29.54 cm with population mean of 20.80 cm. The highest seed yield (1222.98 kg/ha) was recorded in Acc. 001 and the least (611.46 kg/ha) was observed in Acc. 006. Seed oil content varied between 32.15% in Acc. 042 and 54.03% in Acc. 006. Agglomerative cluster dendrogram constructed from morphological data showed random distribution of the genotypes into three cluster groups irrespective of the sources/collection points. The genetic diversity based on SSR Marker Analysis revealed high average expected heterozygosity (0.74), Polymorphic information content (0.68), Nei’s gene diversity index (0.72) and Shannon's Information index (1.43). The dendrogram constructed from molecular data grouped the twenty genotypes into three groups at coefficient of 0.34. From these findings, it showed that the twenty genotypes evaluated are divergent in nature and they could serve as good genetic material for castor breeding in Nigeria.


2007 ◽  
Vol 55 (3) ◽  
pp. 375-382 ◽  
Author(s):  
S. Mamo ◽  
A. Ayana ◽  
T. Tesso

A study on the extent and pattern of genetic variability in late-maturing sorghum [ Sorghum bicolor (L.) Moench] landraces collected from the Wello and Hararge areas of Ethiopia was conducted using random amplified polymorphic DNA (RAPD) markers for 70 individuals representing 14 populations. Four oligonucleotide primers generated a total of 55 polymorphic bands with 13–19 bands per primer and a mean of 16 bands across the 70 individuals. The value of the Shannon diversity index among the populations (0.26) and between the two regions (0.24) was low to moderate, despite the high degree of polymorphic bands per primer. The mean genetic distance (0.25) between the populations was found to be low. The low genetic variation may be due to the reduced population size of late-maturing sorghum landraces in the two regions of Ethiopia because of farmers’ decisions in the process of planting, managing, harvesting and processing their crops. Partitioning of the genetic variation into variation between and within the population revealed that 92.9% and 7.10% of the variation was found to be between and within the populations, respectively. Cluster analysis of genetic distance estimates further confirmed a low level of differentiation in late-maturing sorghum populations both between and within the regions. The implications of the results for genetic conservation purposes are discussed.


Author(s):  
Indu Rialch ◽  
Rama Kalia ◽  
H. K. Chaudhary ◽  
B. Kumar ◽  
J. C. Bhandari ◽  
...  

Ten morpho-agronomic traits and 80 random amplified polymorphic DNA (RAPD) molecular markers were used to survey genetic diversity in 25 chickpea genotypes. Analysis of variance revealed significant variability among different genotypes for morpho-metric traits. The cluster analysis done using morpho-metric traits grouped 25 genotypes into seven and six clusters in Environment I (Env. I) and Environment II (Env. II), respectively. Three genotypes viz., ICCV-96904, HPG-17, ICCV-95503 and L-HR-1 belonging to diverse clusters were identified divergent and may use in heterosis breeding programme. Of 80 random RAPD markers, 25 were found polymorphic. Three major clusters were identified using 25 polymorphic RAPD markers. The genetic similarity coefficient among genotypes ranged from 0.57 to 0.91. The average polymorphic information content (PIC) for 25 RAPD markers ranges from 0.12 to 0.40. D2-statistic, RAPD analysis and study of genotypes performance revealed sufficient genetic diversity among chickpea genotypes which would be useful in future breeding programme.


Sign in / Sign up

Export Citation Format

Share Document