Rotor Design for High Speed PM Machine Based on Riccati Transfer Matrix Method

2011 ◽  
Vol 383-390 ◽  
pp. 337-343
Author(s):  
Ji Qiang Wang ◽  
Feng Xiang Wang

The rotor under study is a PM rotor of a synchronous machine intended for operation at 60 000 rpm. It is well known that design of high speed permanent magnetic (PM) rotor is quite different from that of a normal PM rotor. The determination of the rotor structure and dimensions must take consideration of the strength, stiffness and the magnetic properties of the PM rotor. Based on the Riccati transfer method, the dynamic model of the rotor-bearing system has been established. Then the supporting stiffness of the magnetic bearing is estimated and the PM rotor’s critical speeds and the corresponding vibration modes have been found. A prototype has been built and some test results proved the correct of the calculation.

2013 ◽  
Vol 96 (2) ◽  
pp. 432-440 ◽  
Author(s):  
Chun-Lin Fan ◽  
Qiao-Ying Chang ◽  
Guo-Fang Pang ◽  
Zeng-Yin Li ◽  
Jian Kang ◽  
...  

Abstract This paper reports a study of the extraction efficiency for the multiresidue pesticides and chemical pollutants in tea with three methods over three stages. Method 1 adopts the Pang et al. approach: the targets were extracted with 1% acetic acid in acetonitrile and cleaned up with a Cleanert TPT SPE cartridge; Method 2 adopts the QuEChERS approach: the targets were cleaned up dispersively with graphitized carbon and primary-secondary amine (PSA) sorbent; Method 3 adopts the relatively commonly used approach of hydration for solid samples, with tea hydrated before being extracted through salting out with acetonitrile and the cleanup procedures identical to those of Method 1. The three stages comprised two phases of comparative tests on spike recoveries of 201 pesticides and chemical pollutants from different teas and a third phase on determination of the content of the 201 pesticides and chemical pollutants from aged tea samples. In stages I and II, test results of the spike recoveries of 201 pesticides and chemical pollutants demonstrated that 91.4% of the pesticide and chemical pollutant recoveries fell within the range of 70–110%, and 93.2% of the pesticides and chemical pollutants had RSD < 15%, with no marked difference obtained by Method 1 and Method 2 regardless of whether it was green tea or woolong tea, or GC/MS or GC/MS/MS was used for analysis. For pigment removal, Method 1 was superior to Method 2; in terms of easy operation, Method 2 outweighed Method 1. However, Method 3 obtained relatively low recoveries, with 94% of pesticide and chemical pollutant recoveries less than 70%, which proved that Method 3 was not applicable to the determination of multiresidue pesticides and chemical pollutants in tea. Stage III made a comparison of Method 1 and Method 2 for the extraction efficiency of pesticides and chemical pollutants in 165-day-aged samples of green and woolong tea. Test results showed that 94% of the pesticide and chemical pollutant content in the aged tea samples was recovered with Method 1, more than 10% higher than with Method 2 (30–50% higher on average). For green tea, 193 (GC/MS/MS) and 197 (GC/MS) pesticides and chemical pollutants accounted for 96.5% (GC/MS/MS) and 98.0% (GC/MS) with Method 1 higher than with Method 2. For woolong tea, 191 (GC/MS/MS) and 194 (GC/MS) pesticides and chemical pollutants accounted for 95% (GC/MS/MS) and 96% (GC/MS/MS) with Method 1, higher than with Method 2, respectively. In other words, there were definite differences in the test results for aged tea samples between Method 1 and Method 2, which suggests that Method 1 was capable of extracting more residual pesticides and chemical pollutants from the precipitated 165-day-aged tea samples. The reason can be traced to the possibility that Method 1 (high-speed homogenizing) has better extraction efficiency than Method 2 (vortex and oscillation). Therefore, Method 1 was chosen as the sample preparation technique for multiresidue pesticide and chemical pollutant analysis in tea.


Author(s):  
Erik E. Swanson ◽  
Hooshang Heshmat ◽  
James Walton

To meet the advanced bearing needs of modern turbomachinery, a hybrid foil-magnetic hybrid bearing system was designed, fabricated and tested in a test rig designed to simulate the rotor dynamics of a small gas turbine engine (31 kN to 53 kN thrust class). This oil-free bearing system combines the excellent low and zero-speed capabilities of the magnetic bearing with the high load capacity and high speed performance of the compliant foil bearing. An experimental program is described which documents the capabilities of the bearing system for sharing load during operation at up to 30,000 RPM and the foil bearing component’s ability to function as a back-up in case of magnetic bearing failure. At an operating speed of 22,000 RPM, loads exceeding 5300 N were carried by the system. This load sharing could be manipulated by an especially designed electronic control algorithm. In all tests, rotor excursions were small and stable. During deliberately staged magnetic bearing malfunctions, the foil bearing proved capable of supporting the rotor during continued operation at full load and speed, as well as allowing a safe rotor coast-down. The hybrid system tripled the load capacity of the magnetic bearing alone and can offer a significant reduction in total bearing weight compared to a comparable magnetic bearing.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Enqiong Tang ◽  
Bangcheng Han

The magnetically suspended control moment gyros (MSCMGs) are complex system with multivariable, nonlinear, and strongly gyroscopic coupling. Therefore, its reliability is a key factor to determine whether it can be widely used in spacecraft. Fault-tolerant magnetic bearing systems have been proposed so that the system can operate normally in spite of some faults in the system. However, the conventional magnetic bearing and fault-tolerant control strategies are not suitable for the MSCMGs because of the moving-gimbal effects and requirement of the maximum load capacity after failure. A novel fault-tolerant magnetic bearing system which has low power loss and good robust performances to reject the moving-gimbal effects is presented in this paper. Moreover, its maximum load capacity is unchanged before and after failure. In addition, the compensation filters are designed to improve the bandwidth of the amplifiers so that the nutation stability of the high-speed rotor cannot be affected by the increasing of the coil currents. The experimental results show the effectiveness and superiority of the proposed fault-tolerant system.


Author(s):  
Alan Palazzolo ◽  
Gerald T. Montague ◽  
Yeonkyu Kim ◽  
Andrew Kenny ◽  
Randall Tucker ◽  
...  

This paper contributes to the magnetic bearing literature in two distinct areas: high temperature and redundant actuation. Design considerations test results are given for the first published combined 538°C (1000°F)-high speed rotating test performance of a magnetic bearing. Secondly, a significant extension of the flux isolation based, redundant actuator control algorithm is proposed to eliminate the prior deficiency of changing position stiffness after failure.


Author(s):  
Tianpeng Fan ◽  
Zhe Sun ◽  
Xiaoshen Zhang ◽  
Xunshi Yan ◽  
Jingjing Zhao ◽  
...  

Active magnetic bearing technology is used more and more for its high performance, such as high speed and frictionless operation. But the rotor vibrates sometimes during operation due to the existence of residual unbalanced mass, which may affect the security of the whole system. In order to determine the distribution of residual unbalanced mass, this paper proposes a method based on frequency response, control current analysis, and image data processing. The theoretical and calculated results show the validity of the method.


1999 ◽  
Vol 121 (3) ◽  
pp. 504-508 ◽  
Author(s):  
E. H. Maslen ◽  
C. K. Sortore ◽  
G. T. Gillies ◽  
R. D. Williams ◽  
S. J. Fedigan ◽  
...  

A fault tolerant magnetic bearing system was developed and demonstrated on a large flexible-rotor test rig. The bearing system comprises a high speed, fault tolerant digital controller, three high capacity radial magnetic bearings, one thrust bearing, conventional variable reluctance position sensors, and an array of commercial switching amplifiers. Controller fault tolerance is achieved through a very high speed voting mechanism which implements triple modular redundancy with a powered spare CPU, thereby permitting failure of up to three CPU modules without system failure. Amplifier/cabling/coil fault tolerance is achieved by using a separate power amplifier for each bearing coil and permitting amplifier reconfiguration by the controller upon detection of faults. This allows hot replacement of failed amplifiers without any system degradation and without providing any excess amplifier kVA capacity over the nominal system requirement. Implemented on a large (2440 mm in length) flexible rotor, the system shows excellent rejection of faults including the failure of three CPUs as well as failure of two adjacent amplifiers (or cabling) controlling an entire stator quadrant.


2006 ◽  
Vol 129 (2) ◽  
pp. 522-529 ◽  
Author(s):  
Lawrence Hawkins ◽  
Alexei Filatov ◽  
Shamim Imani ◽  
Darren Prosser

A cryogenic gas expander system that incorporates a high-performance, high-speed permanent magnet, direct-drive generator and low loss magnetic bearings is described. Flow loop testing to 30,000rpm was completed at the system manufacturer’s facility in January 2005, and field installation is scheduled for October 2005. As part of the system testing, the rotor was dropped onto the backup bearings multiple times at an intermediate speed and at 30,000rpm. Orbit and time-history data from a full speed drop and spin down are presented and discussed in detail. A transient, nonlinear rotordynamic analysis simulation model was developed for the machine to provide insight into the dynamic behavior. The model includes the dead band clearance, the flexible backup bearing support, and hard stop. Model predictions are discussed relative to the test data.


Sign in / Sign up

Export Citation Format

Share Document