Research on Fault Diagnosis Based on AGA and LSSVM

2011 ◽  
Vol 383-390 ◽  
pp. 6938-6941
Author(s):  
Da Wei Zhang ◽  
Kai Zhang ◽  
Jing Jiang

Support vector machine (SVM) has excellent learning, classification ability and generalization ability, which uses structural risk minimization instead of traditional empirical risk minimization based on large sample. The perfect performance of SVM will be realized only if the parameters are rightly selected. The accuracy and efficiency of classification largely depend on the quality of the parameters selection. Focusing on the problem of the parameters selection in least squares support vector machine (LSSVM), a new method is proposed to optimize the parameters in LSSVM using adaptive genetic algorithm. The research is provided using this method on the fault diagnosis of a certain type of helicopter’s helicopter-electrical-box. Simulated results show that the proposed method achieves perfect accuracy and efficiency in fault diagnosis.

2011 ◽  
Vol 130-134 ◽  
pp. 2047-2050 ◽  
Author(s):  
Hong Chun Qu ◽  
Xie Bin Ding

SVM(Support Vector Machine) is a new artificial intelligence methodolgy, basing on structural risk mininization principle, which has better generalization than the traditional machine learning and SVM shows powerfulability in learning with limited samples. To solve the problem of lack of engine fault samples, FLS-SVM theory, an improved SVM, which is a method is applied. 10 common engine faults are trained and recognized in the paper.The simulated datas are generated from PW4000-94 engine influence coefficient matrix at cruise, and the results show that the diagnostic accuracy of FLS-SVM is better than LS-SVM.


Transport ◽  
2011 ◽  
Vol 26 (2) ◽  
pp. 197-203 ◽  
Author(s):  
Yanrong Hu ◽  
Chong Wu ◽  
Hongjiu Liu

A support vector machine is a machine learning method based on the statistical learning theory and structural risk minimization. The support vector machine is a much better method than ever, because it may solve some actual problems in small samples, high dimension, nonlinear and local minima etc. The article utilizes the theory and method of support vector machine (SVM) regression and establishes the regressive model based on the least square support vector machine (LS-SVM). Through predicting passenger flow on Hangzhou highway in 2000–2008, the paper shows that the regressive model of LS-SVM has much higher accuracy and reliability of prediction, and therefore may effectively predict passenger flow on the highway. Santrauka Atraminių vektorių metodas (Support Vector Machine – SVM) yra skaičiuojamasis metodas, paremtas statistikos teorija, struktūriniu požiūriu mažinant riziką. SVM metodas, palyginti su kitais metodais, yra patikimesnis metodas, nes juo remiantis galima išspręsti realias problemas, esant įvairioms sąlygoms. Tyrimams naudojama SVM metodo regresijos teorija ir sukuriamas regresinis modelis, kuris grindžiamas mažiausių kvadratų atraminių vektorių metodu (Least Squares Support Vector Machine – LS-SVM). Straipsnio autoriai prognozuoja keleivių srautą Hangdžou (Kinija) greitkelyje 2000–2008 m. Gauti rezultatai rodo, kad regresinis LS-SVM modelis yra labai tikslus ir patikimas, todėl gali būti efektyviai taikomas keleivių srautams prognozuoti greitkeliuose. Резюме Метод опорных векторов (Support Vector Machine – SVM) – это набор аналогичных алгоритмов вида «обучение с учителем», использующихся для задач классификации и регрессионного анализа. Метод SVM принадлежит к семейству линейных классификаторов. Основная идея метода SVM заключается в переводе исходных векторов в пространство более высокой размерности и поиске разделяющей гиперплоскости с максимальным зазором в этом пространстве. Алгоритм работает в предположении, что чем больше разница или расстояние между параллельными гиперплоскостями, тем меньше будет средняя ошибка классификатора. В сравнении с другими методами метод SVM более надежен и позволяет решать проблемы с различными условиями. Для исследования был использован метод SVM и регрессионный анализ, затем создана регрессионная модель, основанная на методе опорных векторов с квадратичной функцией потерь (Least Squares Support Vector Machine – LS-SVM). Авторы прогнозировали пассажирский поток на автомагистрали Ханчжоу (Китай) в 2000–2008 гг. Полученные результаты показывают, что регрессионная модель LS-SVM является надежной и может быть применена для прогнозирования пассажирских потоков на других магистралях.


2003 ◽  
Vol 14 (2) ◽  
pp. 296-303 ◽  
Author(s):  
F. Perez-Cruz ◽  
A. Navia-Vazquez ◽  
A.R. Figueiras-Vidal ◽  
A. Artes-Rodriguez

2011 ◽  
Vol 50-51 ◽  
pp. 624-628
Author(s):  
Xin Ma

Dissolved gas analysis (DGA) is an important method to diagnose the fault of power t ransformer. Least squares support vector machine (LS-SVM) has excellent learning, classification ability and generalization ability, which use structural risk minimization instead of traditional empirical risk minimization based on large sample. LS-SVM is widely used in pattern recognition and function fitting. Kernel parameter selection is very important and decides the precision of power transformer fault diagnosis. In order to enhance fault diagnosis precision, a new fault diagnosis method is proposed by combining particle swarm optimization (PSO) and LS-SVM algorithm. It is presented to choose σ parameter of kernel function on dynamic, which enhances precision rate of fault diagnosis and efficiency. The experiments show that the algorithm can efficiently find the suitable kernel parameters which result in good classification purpose.


2012 ◽  
Vol 166-169 ◽  
pp. 1002-1006
Author(s):  
Guang Yue Ma

BP neural network has some shorcomings,such as local extreme. Support vector machine is a novel statistical learning algorithm,which is based on the principle of structural risk minimization. In the paper, support vector machine is used to perform steel pip corrosion forecasting.The collected steel pip corrosion forecasting experimental data are given,among which corrosion deeps from 8ths to 11ths are used to test the proposed prediction model. BP neural network is applied to steel pip corrosion deep forecasting,which is used to compare with support vector machine to show the superiority of support vector machine in steel pip corrosion forecasting.The comparison of the prediction error of steel pip corrosion deep between support vector machine and BP neural network is given. It can be seen that the prediction ability for steel pip corrosion deep of support vector machine is better than that of BP neural network


2010 ◽  
Vol 26-28 ◽  
pp. 326-329
Author(s):  
Jie Fang Liu

Support vector machine (SVM) is based on the principle of structural risk minimization, which makes SVM has better generalization ability than other traditional learning machines that are based on the learning principle of empirical risk minimization.Research on the application of Support vector regression (SVR) model in spectrophotometry was done to determine the content of benzoic acid and salicylic acid simultaneously. The predicted result was found highly correlated with the time when the data was collected to build the model. The closer of the dates between collecting data for modeling and for predicting, the better the predicted results. SVR model with significantly improved robustness was resulted by using all the collected data over time, which, when applied to the determination of benzoic acid and salicylic acid simultaneously, led to satisfactory result, with recoveries being 97%-102%.


2015 ◽  
Vol 1120-1121 ◽  
pp. 1385-1389
Author(s):  
Xin Yin ◽  
Yuan Peng Liu ◽  
Xian Zhang Feng

The friction welded joints made by GH4169 heat metal alloys are detected by U1traPAC system of the ultrasonic wave explore instrument. Aimed at the blemish signal characteristics, this article introduce Support Vector Machine (SVM) theory, which is based on statistical theory and structural risk minimization principle, to carry out multi-classification study of the detection signal. We decompose de-noising signals with wavelet packet transform, and extract energy eigenvalues according to "energy- defects". In accordance with designed "1-to-v" SVMs scheme, we respectively input normalized eigenvector to the SVM model to obtain the Forecast data. It is verificated that the limited existing data and information is well used by SVM and the signal is accurately been classificated. All of these verify that SVM has a strong generalization ability.


2013 ◽  
Vol 475-476 ◽  
pp. 787-791
Author(s):  
Li Mei Liu ◽  
Jian Wen Wang ◽  
Ying Guo ◽  
Hong Sheng Lin

Support vector machine has good learning ability and it is good to perform the structural risk minimization principle of statistical learning theory and its application in fault diagnosis of the biggest advantages is that it is suitable for small sample decision. Its nature of learning method is under the condition of limited information to maximize the implicit knowledge of classification in data mining and it is of great practical significance for fault diagnosis. This paper analyzed and summarized the present situation of application of support vector machine in fault diagnosis and made a meaningful exploration on development direction of the future.


Sign in / Sign up

Export Citation Format

Share Document