Parameter Identification of Time Varying System Using Basic Function Expansion
Time-varying parameters identification in linear system is considered, which can be changed into time-invariant coefficient polynomials after Taylor expansion. Using response data to establish the time-varying autoregressive moving average (TV-ARMA) model, then utilizing least-square algorithm to obtain time-invariant coefficients of time-varying parameters. According to error analysis, to reduce errors and improve accuracy, the estimation time is divided into small internals and the above method is used in each interval. Simulation shows that, under certain error condition, the time-varying parameters obtained by the method have good agreement with the theoretical values; the measures taken have strong anti-interference and high efficiency.