A Novel IBE Based Authentication Scheme for Network Storage

2012 ◽  
Vol 452-453 ◽  
pp. 791-795 ◽  
Author(s):  
Ya Kun Zhang ◽  
Jia Yin Tian ◽  
Cheng Yang ◽  
Yi Chun Zhang ◽  
Fang Tian Hou

Public Key Infrastructure (PKI) based or Identity-based Encryption (IBE) based authentication schemes are introduced into network storage systems recently. However, the schemes have unavoidable disadvantages:(1)the exchange of digital certificates are complicated.(2)the public key is long.(3)the transmission of private key is vulnerable. In this paper, we design a network storage authentication scheme using Double-PKG. The theoretical and experimental results show that it can ensure the confidentiality, integrity, availability and non-repudiation during data transmission and storage. Our scheme uses the double authentication infrastructure. And it can effectively protect the key transmission. The data encryption and decryption in experiments are relatively stable, so the overall scheme efficiency has been greatly improved.

2018 ◽  
Vol 31 ◽  
pp. 10007 ◽  
Author(s):  
Aryanti Aryanti ◽  
Ikhthison Mekongga

Data security and confidentiality is one of the most important aspects of information systems at the moment. One attempt to secure data such as by using cryptography. In this study developed a data security system by implementing the cryptography algorithm Rivest, Shamir Adleman (RSA) and Vigenere Cipher. The research was done by combining Rivest, Shamir Adleman (RSA) and Vigenere Cipher cryptographic algorithms to document file either word, excel, and pdf. This application includes the process of encryption and decryption of data, which is created by using PHP software and my SQL. Data encryption is done on the transmit side through RSA cryptographic calculations using the public key, then proceed with Vigenere Cipher algorithm which also uses public key. As for the stage of the decryption side received by using the Vigenere Cipher algorithm still use public key and then the RSA cryptographic algorithm using a private key. Test results show that the system can encrypt files, decrypt files and transmit files. Tests performed on the process of encryption and decryption of files with different file sizes, file size affects the process of encryption and decryption. The larger the file size the longer the process of encryption and decryption.


2020 ◽  
Vol 309 ◽  
pp. 02006
Author(s):  
Jianbo Yao ◽  
Chaoqiong Yang

It is an important challenge to find out suitable cryptography for WSN due to limitations of energy, computation capability and storage resources. Considering this sensor feature on limitations of resources, a security architecture based-on public key cryptography is proposed. The security architecture is based on identity based cryptosystem, but not requires key handshaking. The analysis shows that the security architecture ensures a good level of security and is very much suitable for the resources constrained trend of wireless sensor network.


Author(s):  
Sabitha S ◽  
Binitha V Nair

Cryptography is an essential and effective method for securing information’s and data. Several symmetric and asymmetric key cryptographic algorithms are used for securing the data. Symmetric key cryptography uses the same key for both encryption and decryption. Asymmetric Key Cryptography also known as public key cryptography uses two different keys – a public key and a private key. The public key is used for encryption and the private key is used for decryption. In this paper, certain asymmetric key algorithms such as RSA, Rabin, Diffie-Hellman, ElGamal and Elliptical curve cryptosystem, their security aspects and the processes involved in design and implementation of these algorithms are examined.


2020 ◽  
Vol 8 (4) ◽  
pp. 475
Author(s):  
Maria Okta Safira ◽  
I Komang Ari Mogi

In this paper two methods are used, namely the vigenere cipher method and the RSA method. The vigenere cipher method is an example of a symmetric algorithm, while RSA is an example of an asymmetric algorithm. The combination of these two methods is called hybrid cryptography which has the advantage in terms of speed during the encryption process. Each process, which is encryption and decryption, is carried out twice, so that security can be ensured. In the process of forming the key used the RSA method. In the encryption process using public keys that have been generated before when the key is formed. This public key is used in sending data to the recipient of a secret message where this key is used for the data encryption process. The Secret key is kept and will be used during the decryption process. There is a system architecture that describes how clients and servers communicate with each other over the internet using the TCP protocol where the client here is an IoT device and the server is a server. 


Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 843 ◽  
Author(s):  
Pei-Yen Wan ◽  
Teh-Lu Liao ◽  
Jun-Juh Yan ◽  
Hsin-Han Tsai

This paper is concerned with the design of an improved El-Gamal cryptosystem based on chaos synchronization. The El-Gamal cryptosystem is an asymmetric encryption algorithm that must use the public and private keys, respectively, in the encryption and decryption processes. However, in our design, the public key does not have to appear in the public channel. Therefore, this proposed improved El-Gamal cryptosystem becomes a symmetric-like encryption algorithm. First, a discrete sliding mode controller is proposed to ensure the synchronization of master and slave chaotic systems; next, a novel improved El-Gamal cryptosystem is presented. In the traditional El-Gamal cryptosystem, the public key is static and needs to be open which provides an opportunity to attack. However, in this improved design, due to the chaos synchronization, the public key becomes dynamic and does not appear in public channels. As a result, drawbacks of long cipher text and time-consuming calculation in the traditional El-Gamal cryptosystem are all removed. Finally, several performance tests and comparisons have shown the efficiency and security of the proposed algorithm.


2018 ◽  
Vol 173 ◽  
pp. 03019
Author(s):  
Qin Li ◽  
Caiming Liu ◽  
Siyuan Jing ◽  
Lijun Du

User identity authentication is the foundation of data transmission in the complicated network environment. Moreover, the key issue is the effective identity authentication of both sides in data transmission. An authentication method for user identity based on two-way confirmation in data transmission is proposed in this paper. The public key, private key, information of traditional identity authentication, one-time transmission key, timestamp, authentication lifecycle for timestamp and other authentication elements are constructed. Based on guaranteeing the timeliness of data transmission, the two-way user identity authentication process for sending terminal and receiving terminal is set up through using the information of traditional identity authentication and one-time transmission key.


2019 ◽  
Vol 12 (3) ◽  
pp. 133-153 ◽  
Author(s):  
Mamta ◽  
Brij B. Gupta ◽  
Syed Taqi Ali

Public-key encryption with keyword search (PEKS) is a well-known technique which allows searching on encrypted data using the public key system. However, this technique suffers from the keyword guessing attack (KGA). To address this problem, a modified version of PEKS called public key encryption with fuzzy keyword search (PEFKS) has been introduced where each keyword is associated with an exact search trapdoor (EST) and a fuzzy search trapdoor (FST) which is provided to the cloud server. PEFKS prevents KGA in such a way that two or maximum three keywords share the same FST. Hence, even if the cloud server knows the FST it cannot link it to the corresponding keyword. But, with a probability of 1/3 the malicious cloud server can still guess the keyword corresponding to FST. Therefore, in this article, the authors present an approach which can improve the security of the PEFKS technique by reducing the probability of guessing the keyword to 1/k where k is the number of keywords that share the same FST, thus enhancing the overall reliability. In addition, the authors have used an identity-based encryption (IBE) as an underlying technique to construct the searchable encryption scheme and proved its security in the standard model.


Author(s):  
Kannan Balasubramanian ◽  
M. Rajakani

The concept of Identity Based Cryptography introduced the idea of using arbitrary strings such as e-mail addresses and IP Addresses to form public keys with the corresponding private keys being created by the Trusted Authority(TA) who is in possession of a system-wide master secret. Then a party, Alice who wants to send encrypted communication to Bob need only Bob's identifier and the system-wide public parameters. Thus the receiver is able to choose and manipulate the public key of the intended recipient which has a number of advantages. While IBC removes the problem of trust in the public key, it introduces trust in the TA. As the TA uses the system-wide master secret to compute private keys for users in the system, it can effectively recompute a private key for any arbitrary string without having to archive private keys. This greatly simplifies key management as the TA simply needs to protect its master secret.


Author(s):  
Kannan Balasubramanian ◽  
M. Rajakani

The concept of identity-based cryptography introduced the idea of using arbitrary strings such as e-mail addresses and IP addresses to form public keys with the corresponding private keys being created by the trusted authority (TA) who is in possession of a systemwide master secret. Then a party, Alice, who wants to send encrypted communication to Bob need only Bob's identifier and the systemwide public parameters. Thus, the receiver is able to choose and manipulate the public key of the intended recipient which has a number of advantages. While IBC removes the problem of trust in the public key, it introduces trust in the TA. As the TA uses the systemwide master secret to compute private keys for users in the system, it can effectively recompute a private key for any arbitrary string without having to archive private keys. This greatly simplifies key management as the TA simply needs to protect its master secret.


Sign in / Sign up

Export Citation Format

Share Document