Simulation Analysis of Contact Pattern and Strength of WN Gears Having Tooth Surface Deviations

2012 ◽  
Vol 479-481 ◽  
pp. 944-948 ◽  
Author(s):  
Dian Hua Chen ◽  
Zhong Wei Zhang

A practical method based on normal gaps topography is proposed here for loaded tooth contact analysis of WN gear having tooth surface deviations. The simulation of meshing state and tooth strength of WN gear are provided with real tooth surfaces. In the study normal gaps distribution is adopted to calculate tooth surface contact elastic deformation and local deviations due to manufacturing errors and tooth surface wear. For WN gear, the loaded distribution on the contact zone in meshing tooth surface has not been investigated because of their complexity in the contact state. The finite element method is adopted to analyze the contact pattern and tooth strength. The study has concretely calculated the contact pressure and zone of meshing in different loaded and transmission error. At the end examples are analyzed to demonstrate the effectiveness of the proposed method in quantifying effect of such deviations on the loaded distribution and tooth stress distribution.

2010 ◽  
Vol 132 (7) ◽  
Author(s):  
M. Kolivand ◽  
A. Kahraman

Actual hypoid gear tooth surfaces do deviate from the theoretical ones either globally due to manufacturing errors or locally due to reasons such as tooth surface wear. A practical methodology based on ease-off topography is proposed here for loaded tooth contact analysis of hypoid gears having both local and global deviations. This methodology defines the theoretical pinion and gear tooth surfaces from the machine settings and cutter parameters, and constructs the surfaces of the theoretical ease-off and roll angle to compute for the unloaded contact analysis. This theoretical ease-off topography is modified based on tooth surface deviations and is used to perform a loaded tooth contact analysis according to a semi-analytical method proposed earlier. At the end, two examples, a face-milled hypoid gear set having local deviations and a face-hobbed one having global deviations, are analyzed to demonstrate the effectiveness of the proposed methodology in quantifying the effect of such deviations on the load distribution and the loaded motion transmission error.


2021 ◽  
Author(s):  
Shunxing Wu ◽  
Hongzhi Yan ◽  
Zhiyong Wang ◽  
Rengui Bi ◽  
Jia Li

Abstract For the hypoid gear pair of the heavy-duty vehicle drive axle machined by the duplex helical method, in order to avoid edge contact and stress concentration on the tooth surface, a four-segment tool profile is designed to modify the concave and convex surfaces simultaneously. First, the geometric model of the four-segment tool profile is established. Second, the mathematical model of the duplex helical method based on the four-segment tool profile is established, and the method of solving the tooth surface generated by the connecting points of the four-segment tool profile is given. Finally, the finite element method of loaded tooth contact analysis is used to analyze the meshing performance of the gear pair obtained by the four-segment tool profile modification, and the results are compared with the original gear pair. The results show that after the tooth surfaces are modified, the edge contact of the tooth surfaces are avoided, the stress distribution of the tooth surfaces are improved, the maximum contact stress of the tooth surfaces are reduced, and the fatigue and wear life of the tooth surface are improved.


2010 ◽  
Vol 29-32 ◽  
pp. 1711-1716
Author(s):  
Shu Yan Zhang ◽  
Hui Guo

A double direction modification with a grinding worm is applied on tooth surface of face gear drive. The surface equations of the rack cutter, shaper and grinding worm are derived respectively. Loaded tooth contact analysis (LTCA) with finite element method (FEM) is performed to investigate the meshing performance of face gear drive before modification and after modification. The modification by a grinding worm can obviously reduce the sensitivity of face gear drive to misalignment; the bending stress and the contact stress are reduced with avoiding edge contact; the load transmission error is reduced. This method can obtain a more stable bearing contact in contrast to the method by increasing tooth number of shaper, and the modification magnitude can be controlled freely. The investigation is illustrated with numerical examples.


1988 ◽  
Vol 110 (3) ◽  
pp. 343-347 ◽  
Author(s):  
F. L. Litvin ◽  
J. Zhang ◽  
R. F. Handschuh

A method for generation of crowned pinion tooth surfaces using a surface of revolution is developed. The crowned pinion meshes with a regular involute gear and has a prescribed parabolic type of transmission errors when the gears operate in the aligned mode. When the gears are misaligned the transmission error remains parabolic with the maximum level still remaining very small (less than 0.34 arc second for the numerical examples). Tooth Contact Analysis (TCA) is used to simulate the conditions of meshing, determine the transmission error, and the bearing contact.


2014 ◽  
Vol 538 ◽  
pp. 122-126
Author(s):  
Xing Wang ◽  
Zong De Fang ◽  
Sheng Jin Li

The assembly misalignment is the key factor that influences the meshing performance of gear, the meshing performance worked on no-load or light load conditions is more completely expressed by contact pattern and transmission error. According to the contact pattern and transmission error, the influence of assembly misalignment to the meshing performance of hypoid gear is studied, this method break the limitations relying on experience to adjust the installation. Based on the machining principle and method of Gleason hypoid gears which machined by the HGT method, the mathematical model of machining was established, and the theoretical tooth surface equations were derived, on this basis, the hypoid gear as an example, the tooth contact analysis (TCA) was carried out considering assembly misalignment, the conclusion was drew that the influence to the position of tooth surface contact area and the magnitude of transmission errors are different when the Assembly misalignment affecting alone. This can offer certain reference for the installation and adjustment of hypoid gear pair in engineering practice.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Isamu Tsuji ◽  
Kazumasa Kawasaki ◽  
Hiroshi Gunbara ◽  
Haruo Houjoh ◽  
Shigeki Matsumura

Straight bevel gears are widely used in the plant of large-sized power generation when the gears have large size. The purpose of this study is to manufacture the large-sized straight bevel gears with equi-depth teeth on a multitasking machine. The manufacturing method has the advantages of arbitrary modification of the tooth surface and machining of the part without the tooth surface. For this study, first, the mathematical model of straight bevel gears by complementary crown gears considering manufacture on multitasking machine is proposed, and the tooth contact pattern and transmission errors of these straight bevel gears with modified tooth surfaces are analyzed in order to clarify the meshing and contact of these gears. Next, the numerical coordinates on the tooth surfaces of the bevel gears are calculated and the tooth profiles are modeled using a 3D-Computer-Aided Design (CAD) system. Five-axis control machines were utilized. The gear-work was machined by a swarf cutting using a coated carbide end mill. After rough cutting, the gear-work was heat-treated, and it was finished based on a Computer-Aided Manufacturing (CAM) process through the calculated numerical coordinates. The pinion was also machined similarly. The real tooth surfaces were measured using a coordinate measuring machine and the tooth flank form errors were detected using the measured coordinates. As a result, the obtained tooth flank form errors were small. In addition, the tooth contact pattern of the manufactured large-sized straight bevel gears was compared with those of tooth contact analysis. The data showed good agreement.


Author(s):  
Kazumasa Kawasaki ◽  
Isamu Tsuji ◽  
Hiroshi Gunbara

Straight bevel gears are widely used in the plant of large-sized power generation when the gears have large size. The purpose of this study is to manufacture the large-sized straight bevel gears with equi-depth on multi-tasking machine. The manufacturing method has the advantages of arbitrary modification of the tooth surface and machining of the part without the tooth surface. For this study, first the mathematical model of straight bevel gears by complementary crown gears considering manufacture on multi-tasking machine is proposed, and the tooth contact pattern and transmission errors of these straight bevel gears with modified tooth surfaces are analyzed in order to clarify the meshing and contact of these gears. Next, the numerical coordinates on the tooth surfaces of the bevel gears are calculated and the tooth profiles are modeled using a 3D-CAD system. 5-axis control machines were utilized. The gear-work was machining by a swarf cutting using a coated carbide end mill. After rough cutting, the gear-work was heat-treated, and it was finished based on a CAM process through the calculated numerical coordinates. The pinion was also machined similarly. The real tooth surfaces were measured using a coordinate measuring machine and the tooth flank form errors were detected using the measured coordinates. As a result, the obtained tooth flank form errors were small. In addition, the tooth contact pattern of the manufactured large-sized straight bevel gears was compared with those of tooth contact analysis. As a result, there was good agreement.


2019 ◽  
Vol 142 (5) ◽  
Author(s):  
Ruihua Sun ◽  
Chaosheng Song ◽  
Caichao Zhu ◽  
Siyuan Liu ◽  
Changxu Wei

Abstract This paper proposed a new tooth surface modeling method for beveloid gear based on the real cutter surface using two orthogonal variables. Then, the analytical mesh model with and without misalignments were derived and solved to study the influences of geometry design parameters on contact behaviors for paralleled beveloid gear pair. Loaded tooth contact analysis is used to validate the proposed mesh model by abaqus software, and the error is below 5%. Results suggest that the increase in pressure, cone, and helical angles enlarge the contact area for meshing without misalignments. The addendum coefficient has unsubstantial impacts on the contact behaviors. For meshing with axis error in the horizontal direction, the growth of pressure angle, cone angle, helical angle, and addendum coefficient improves the carrying capacity of single tooth. But the transmission error deteriorates with the increase in pressure, cone, and helical angles. All three types of misalignments have little influence on the size of the contact ellipse. The growth of axis errors in horizontal and vertical directions significantly increases the transmission error, but the center distance error has a little influence on the transmission precision.


2000 ◽  
Vol 122 (1) ◽  
pp. 109-122 ◽  
Author(s):  
Claude Gosselin ◽  
Thierry Guertin ◽  
Didier Remond ◽  
Yves Jean

The Transmission Error and Bearing Pattern of a gear set are fundamental aspects of its meshing behavior. To assess the validity of gear simulation models, the Transmission Error and Bearing Pattern of a Formate Hypoid gear set are measured under a variety of operating positions and applied loads. Measurement data are compared to simulation results of Tooth Contact Analysis and Loaded Tooth Contact Analysis models, and show excellent agreement for the considered test gear set. [S1050-0472(00)00901-6]


2014 ◽  
Vol 136 (8) ◽  
Author(s):  
Vilmos V. Simon

In this study, an optimization methodology is proposed to systematically define the optimal head-cutter geometry and machine-tool settings to simultaneously minimize the tooth contact pressure and angular displacement error of the driven gear (the transmission error), and to reduce the sensitivity of face-hobbed spiral bevel gears to the misalignments. The proposed optimization procedure relies heavily on the loaded tooth contact analysis for the prediction of tooth contact pressure distribution and transmission errors influenced by the misalignments inherent in the gear pair. The load distribution and transmission error calculation method employed in this study were developed by the author of this paper. The targeted optimization problem is a nonlinear constrained optimization problem, belonging to the framework of nonlinear programming. In addition, the objective function and the constraints are not available analytically, but they are computable, i.e., they exist numerically through the loaded tooth contact analysis. For these reasons, a nonderivative method is selected to solve this particular optimization problem. That is the reason that the core algorithm of the proposed nonlinear programming procedure is based on a direct search method. The Hooke and Jeeves pattern search method is applied. The effectiveness of this optimization was demonstrated on a face-hobbed spiral bevel gear example. Drastic reductions in the maximum tooth contact pressure (62%) and in the transmission errors (70%) were obtained.


Sign in / Sign up

Export Citation Format

Share Document