Modal Analysis of Helical Milling Unit

2012 ◽  
Vol 482-484 ◽  
pp. 2454-2459 ◽  
Author(s):  
Xu Da Qin ◽  
Cui Lu ◽  
Qi Wang ◽  
Hao Li ◽  
Lin Jing Gui

Based on the analysis of the working principle and structure characteristics of helical milling unit, the prototype’s three-dimensional model was built, the prototype’s finite element modal analysis was conducted, and the first 6 natural frequencies and their mode shapes were obtained. The finite element model is experimentally validated by comparing finite element and experimental modal’s parameters. This paper investigates the dynamic properties of prototype, and provides theoretical references for the subsequent dynamic analysis and structural optimization.

2014 ◽  
Vol 960-961 ◽  
pp. 1420-1423
Author(s):  
Zhi Dong Huang ◽  
Guo Fei Li ◽  
Juan Cong ◽  
Yun Wang ◽  
Wei Na Yu ◽  
...  

Based on Solidworks software, the three-dimensional model of two wheels scooter is set up. The finite element model of two wheels scooter is generated. Modal analysis of driving system and telescopic mechanism of bar on two wheels scooter is investigated. The first five orders natural frequency and major modes of driving system and telescopic mechanism of bar are clarified. The method and the result can be used as a reference of dynamic design and lay foundation for calculation and analysis of dynamic response for the two wheels scooter.


2014 ◽  
Vol 496-500 ◽  
pp. 601-604
Author(s):  
Jing Wang ◽  
Yong Wang ◽  
Ying Hua Liao

In this paper, the modal of motorcycle frame is analyzed by using the analytic method and experimental method. The results show that the dynamic properties of the finite element model are in good agreement with the experiment and the finite element model was reliable and accurate.


2019 ◽  
Vol 5 (4) ◽  
pp. 121
Author(s):  
Aykut Uray ◽  
Hasan Selim Şengel ◽  
Serdar Çarbaş

In this study, non-destructive tests and laboratory tests were carried out in order to determine the material properties in Iznik Yeşil Mosque, Iznik District, Bursa Province. For the purpose of determining the soil characteristics of the building, the soil survey studies conducted in the Iznik Yeşil Mosque area were investigated. The finite element model was formed by making a three dimensional model study of the structure. With the finite element model, static analysis, modal analysis and behavioral spectrum analysis were performed under vertical loads in order to collect data for the damaged areas of the structure.


Author(s):  
Vikas Arora

Model updating techniques are used to correct the finite element model of a structure using experimental data such that the updated model more correctly describes the dynamic properties of the structure. One of the applications of such an updated model is to predict the effects of making modifications to the structure. These modifications may be imposed by design alterations for operating reasons. Most of the model updating techniques neglect damping and so these updated models can’t be used for accurate prediction of complex frequency response functions (FRFs) and complex mode shapes. In this paper, a detailed comparison of prediction capabilities of parameter-based and non parameter-based damped updated methods for structural modifications is done. The suitability of paramter-based and non parameter-based damped updated models for predicting the effects of structural modifications is evaluated by laboratory experiment for the case of an F-shape test structure. It is concluded that parameter-based damped updated models are likely to perform better in predicting the effects of structural modifications.


2011 ◽  
Vol 105-107 ◽  
pp. 204-207
Author(s):  
Jian Dong Shang ◽  
Jun Qi Guo ◽  
Dong Fang Hu

The vibration is a high-precision machine tool components in the design of the major issues, facing its precision has a great influence, so column parts of its modal analysis is necessary. Creating three-dimensional finite element model of the column, using finite element analysis software ANSYS modal analysis of the column, which can reached the first five natural frequencies and mode shapes. Column Part of our understanding of dynamic performance and improve the machining accuracy is helpful. Modal analysis method is the dynamic performance of the column on the main approach, which mainly is to determine the vibration characteristics of the column that is the natural frequency and vibration mode, which we can determine the modes of processing accuracy, and thus the relevant parts of the machine column can be optimized so that it meet the requirements.


2014 ◽  
Vol 488-489 ◽  
pp. 1208-1210
Author(s):  
You Jun Zhang ◽  
Nan Zhao ◽  
Jie Lu

Crankshaft is one of the important parts of reciprocating compressor. It takes a large reciprocating compressor crankshaft as the research object. First it establishes the three-dimensional solid model of the crankshaft by the software Pro/E. Then it contacts the Pro/E and ANSYS Workbench by the interface to establish the finite element model of the crankshaft. After taking the modal analysis and calculations of the crankshaft in the ANSYS Workbench module, it obtains the foundation for the design of the crankshaft structure.


2014 ◽  
Vol 620 ◽  
pp. 24-27 ◽  
Author(s):  
Zhi Dong Huang ◽  
Yun Pu Du ◽  
Liang Zhao ◽  
Ke Gang Zhu ◽  
Hong Ji ◽  
...  

Based on Solidworks software, the three-dimensional model of two wheels scooter is set up. The finite element model of two wheels scooter is generated. Finite element analysis of telescopic mechanism of bar on two wheels scooter is investigated. The stress and strain of telescopic mechanism of bar is investigated. The stress diagram and the strain diagram are obtained. The method and the result can be used as a reference of innovative design of two wheels scooter.


2015 ◽  
Vol 742 ◽  
pp. 603-607
Author(s):  
Xiu Li Yang ◽  
Lin Jing Qin ◽  
Feng Xiao Huang ◽  
Wen Jing Guo

The gyro-stabilized platform is one of the key parts of a guidance weapon. The structure performance of a platform influences the accuracy and reliability of the guidance weapon straightly. In order to reduce development cost and time, the structural modeling and analysis of gyro stabilized platform is very necessary. UG software is applied to establish the three-dimensional model of a platform firstly. And then some components are simplified using MSC Patron. According to the different connection mode between the components, some appropriate connecting elements are applied to establish the finite element model of the platform. In order to meet the special requirements of individual components, appropriate materials are selected so that the finite element model is closer to the actual situation which ensures the reliability of mode analysis and optimized computing results. The work in this paper provides reference for establishment of the similar structure finite element models.


2012 ◽  
Vol 490-495 ◽  
pp. 845-849
Author(s):  
Xiao Yan Zhang ◽  
Ze Li ◽  
Long Wang

In this paper a sluice project is taken as an example. Dynamic finite element method is used to analyze dynamic response of sluice structure under the action of seismic acceleration (0.157g). The subspace iterative method is used in the modal analysis of the sluice structure after the finite element model is established, the natural vibration frequencies, and mode shapes are obtained. And then the response spectrum method is employed to implement dynamic response of the structures. The results show that the dynamic stress concentrations take place on some regions


Sign in / Sign up

Export Citation Format

Share Document